Python 使用@property对属性进行数据规范性校验的实

编辑: admin 分类: python 发布时间: 2021-12-04 来源:互联网

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个​​set_score()​​方法来设置成绩,再通过一个​​get_score()​​来获取成绩,这样,在​​set_score()​​方法里,就可以检查参数:

class Student(object):

    def get_score(self):
         return self._score

    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

现在,对任意的Student实例进行操作,就不能随心所欲地设置score了:

>>> s = Student()
>>> s.set_score(60) # ok!
>>> s.get_score()
60
>>> s.set_score(9999)
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的​​@property​​装饰器就是负责把一个方法变成属性调用的:

class Student(object):

    @property
    def score(self):
        return self._score

    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

​​@property​​的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上​​@property​​就可以了,此时,​​@property​​本身又创建了另一个装饰器​​@score.setter​​,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的​​@property​​,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过getter和setter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

class Student(object):

    @property
    def birth(self):
        return self._birth

    @birth.setter
    def birth(self, value):
        self._birth = value

    @property
    def age(self):
        return 2015 - self._birth

上面的​​birth​​是可读写属性,而​​age​​就是一个只读属性,因为​​age​​可以根据​​birth​​和当前时间计算出来。

要特别注意:属性的方法名不要和实例变量重名。例如,以下的代码是错误的:

class Student(object):

    # 方法名称和实例变量均为birth:
    @property
    def birth(self):
        return self.birth

这是因为调用​​s.birth​​时,首先转换为方法调用,在执行​​return self.birth​​时,又视为访问​​self​​的属性,于是又转换为方法调用,造成无限递归,最终导致栈溢出报错​​RecursionError​​。

小结

​​@property​​广泛应用在类的定义中,可以让调用者写出简短的代码,同时保证对参数进行必要的检查,这样,程序运行时就减少了出错的可能性。

练习

请利用​​@property​​给一个​​Screen​​对象加上​​width​​和​​height​​属性,以及一个只读属性​​resolution​​:

# -*- coding: utf-8 -*-
# 测试:
s = Screen()
s.width = 1024
s.height = 768
print('resolution =', s.resolution)
if s.resolution == 786432:
print('测试通过!')
else:
print('测试失败!')

完整源码:

#!/usr/bin/env python3
# -*- coding: utf-8 -*-

class Student(object):

@property
def score(self):
return self._score

@score.setter
def score(self, value):
if not isinstance(value, int):
raise ValueError('score must be an integer!')
if value < 0 or value > 100:
raise ValueError('score must between 0 ~ 100!')
self._score = value

s = Student()
s.score = 60
print('s.score =', s.score)
# ValueError: score must between 0 ~ 100!
s.score = 9999

到此这篇关于Python 使用@property对属性进行数据规范性校验的实现的文章就介绍到这了,更多相关Python @property 属性校验内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

【原URL http://www.yidunidc.com/kt.html 转载请说明出处】