java图搜索算法之图的对象化描述示例详解

编辑: admin 分类: java 发布时间: 2021-12-04 来源:互联网
目录
  • 一、前言
  • 二、什么是图
  • 三、怎么存储一个图的结构
    • 1、邻接矩阵
    • 2、邻接表
    • 3、图对象化表示
  • 四、图的作用

    你好,我是小黄,一名独角兽企业的Java开发工程师。
    校招收获数十个offer,年薪均20W~40W。
    感谢茫茫人海中我们能够相遇,
    俗话说:当你的才华和能力,不足以支撑你的梦想的时候,请静下心来学习,
    希望优秀的你可以和我一起学习,一起努力,实现属于自己的梦想。

    一、前言

    对于图来说,我一直以来都似懂非懂

    懂的是图的含义,不懂的是图具体的实现

    对于当前各大厂面试的图题,不外乎以下几点:

    深度优先搜索、广度优先搜索:DFS、BFS最小生成树:Kruskal、Prim最短路径:Dijkstra、Dijkstra加强堆版拓扑排序:TopologicalSort

    这几个算法其实听起来不太难懂,但真正写代码的时候会发现一个事情,傻逼图的边和点太难描述,导致我们写着写着人就没了,绕进去出不来了

    本篇系列文章,将从对象的角度来描述一个图的产生,并用最简单的思路去介绍上述所有算法,让我们走进本篇文章吧。

    二、什么是图

    图是我们现实生活中连接关系的抽象,例如朋友圈、微博的关注关系。

    简单抽象如下图所示:

    在这里插入图片描述

    对于图来说,分为有向图和无向图,如下图所示:

    在这里插入图片描述

    我们可以看出来,有向图代表只能从一个顶点到达另一个顶点,而无向图代表两个顶点之间可以相互到达。

    图1中,V4到达V1,而V1无法到达V4

    图2中,V4到达V1,V1也可以到达V4

    当然,还有一种图的形式,叫做:带权图(主要用来做一些路程、路费的计算),如下图所示:

    在这里插入图片描述

    三、怎么存储一个图的结构

    我们在刷题的时候,题目给我们的样例经常是这种的:743. 网络延迟时间

    在这里插入图片描述

    题目会给我们一个二维的矩阵,一行矩阵有三个数字,分别是:起始点、终止点、权重

    如何将这个二维的矩阵表示出来,成为了我们在做图题目中比较困难的一件事

    本文将直接使用一种特殊的表示形式来解决这个难题,我们先从最基本的 邻接矩阵 和 邻接表 表示开始

    1、邻接矩阵

    邻接矩阵是表示图中顶点之间相邻关系的矩阵。

    对于无向图的邻接矩阵:对称矩阵:int[][]

    在这里插入图片描述

    有向图的邻接矩阵:各行之和是出度,各列之和是入度

    在这里插入图片描述

    带权图的邻接矩阵

    在这里插入图片描述

    2、邻接表

    邻接表是一种链式存储结构,类似于链表数组。

    无向图的邻接表:HashMap<Integer, ArrayList<Integer>>

    在这里插入图片描述

    3、图对象化表示

    我们思考,上述两个方法对于图的表示形象嘛?

    虽然有的题目在用矩阵表示的时候,做起来很舒服,但我们想一想,当我们求最小生成树时,利用边的连接解锁点时,用矩阵会
    不会感觉很抽象难懂,所示,我们要自定义一个图的表示方法,来增强我们对图的理解

    对于图来说,我们想一想主要包括什么?

    图是由点和边组成的一个结构,也就是我们想要勾画一个图,必须有:点、边

    点的描述:

    点的值:int value

    邻接的点:ArrayList<Node> nexts

    邻接的边:ArrayList<Edge> edges

    入度:int in

    出度:int out

    public class Node {
        public int value;
        public int in;
        public int out;
        public ArrayList<Node> nexts;
        public ArrayList<Edge> edges;
    
        public Node(int value) {
            this.value = value;
            in = 0;
            out = 0;
            nexts = new ArrayList<>();
            edges = new ArrayList<>();
        }
    }
    

    边的描述:

    来自哪里:Node from去往哪里:Node to边的权重:int weight

    public class Edge {
        Node from;
        Node to;
        int weight;
    
        public Edge(Node from, Node to, int weight) {
            this.from = from;
            this.to = to;
            this.weight = weight;
        }
    }
    

    图的描述:

    多个点的集合:HashMap<Integer, Node> nodes多个边的集合:Set<Edge> edges

    public class Graph {
        public HashMap<Integer, Node> nodes;
        public Set<Edge> edges;
    
        public Graph() {
            nodes = new HashMap<>();
            edges = new HashSet<>();
        }
    }
    

    这里可能有疑问了,你这样写虽然形象,但是怎么进行转化呢?

    别急,下面我们就进行转化。

    public static Graph createGraph(int[][] matrix) {
            // 初始化一个图
            Graph graph = new Graph();
    
            for (int[] arr : matrix) {
                // 来的点
                int from = arr[0];
                // 去的点
                int to = arr[1];
                // 权重
                int value = arr[2];
    
                // 生成相对应的点
                Node fromNode = new Node(from);
                Node toNode = new Node(to);
    
                // 查看当前有没有这个点的信息
                if (!graph.nodes.containsKey(from)) {
                    graph.nodes.put(from, fromNode);
                }
                if (!graph.nodes.containsKey(to)) {
                    graph.nodes.put(to, toNode);
                }
    
                // 生成一个边(这里的边是有向边)
                Edge edge = new Edge(fromNode, toNode, value);
    
                // 点里面加入边
                graph.nodes.get(from).edges.add(edge);
    
                //  点里面加入下一个点
                graph.nodes.get(from).nexts.add(toNode);
    
                // 点里面加入入度和出度
                graph.nodes.get(from).out++;
                graph.nodes.get(to).in++;
    
                // 图里面加入边
                graph.edges.add(edge);
    
            }
            return graph;
        }
    

    当我们转化完的时候,进行测试:

    public static void main(String[] args) {
            int[][] arr = new int[][]{{2, 1, 1}, {2, 3, 1}, {3, 4, 1}};
            Graph graph = createGraph(arr);
            // 从2开始的边有哪些
            List<Edge> edgeList = graph.nodes.get(2).edges;
            for (Edge edge : edgeList) {
                System.out.println("从" + edge.from.value + "---->" + edge.to.value + "权值为" + edge.weight);
            }
        }
    

    最终结果:

    从2---->1权值为1
    从2---->3权值为1

    以后我们在做题的时候,都可以保存此转化代码,直接进行调用即可

    简单形象的描绘了我们的图

    四、图的作用

    图经常用在以下地方:

    • 深度优先搜索、广度优先搜索:DFS、BFS
    • 最小生成树:Kruskal、Prim
    • 最短路径:Dijkstra、Dijkstra加强堆版
    • 拓扑排序:TopologicalSort

    之后的章节会慢慢的讲解以上所有的应用

    在这里插入图片描述

    以上就是java算法图的对象化描述示例详解的详细内容,更多关于java图的对象化描述算法的资料请关注自由互联其它相关文章!

    【文章出处:http://www.yidunidc.com/hkzq.html欢迎转载】