C++设计模式之单例模式详解

编辑: admin 分类: c#语言 发布时间: 2021-12-12 来源:互联网
目录
  • 单例模式:就是只有一个实例。
  • 单例模式又分为两种基本的情形:饿汉式和懒汉式
  • 如下是懒汉式单例类
    • 小结:
  • 继续看单例模式
    • 总结

      单例模式:就是只有一个实例。

      singleton pattern单例模式:确保某一个类在程序运行中只能生成一个实例,并提供一个访问它的全局访问点。这个类称为单例类。如一个工程中,数据库访问对象只有一个,电脑的鼠标只能连接一个,操作系统只能有一个窗口管理器等,这时可以考虑使用单例模式。

      众所周知,c++中,类对象被创建时,编译系统为对象分配内存空间,并自动调用构造函数,由构造函数完成成员的初始化工作,也就是说使用构造函数来初始化对象。

      1、那么我们需要把构造函数设置为私有的 private,这样可以禁止别人使用构造函数创建其他的实例。

      2、又单例类要一直向系统提供这个实例,那么,需要声明它为静态的实例成员,在需要的时候,才创建该实例。

      3、且应该把这个静态成员设置为 null,在一个public 的方法里去判断,只有在静态实例成员为 null,也就是没有被初始化的时候,才去初始化它,且只被初始化一次。

      通常我们可以让一个全局变量使得一个对象被访问,但它不能阻止你实例化多个对象。如果采用全局或者静态变量的方式,会影响封装性,难以保证别的代码不会对全局变量造成影响。

      一个最好的办法是,让类自身负责保存它的唯一实例。这个类可以保证没有其他实例可以被创建,并且它可以提供一个访问该实例的方法,单例模式比全局对象好还包括,单例类可以继承。

      单例模式又分为两种基本的情形:饿汉式和懒汉式

      直接在静态区初始化 instance,然后通过 get 方法返回,这样这个类每次直接先生成一个对象,好像好久没吃饭的饿汉子,急着吃饭一样,急切的 new 对象,这叫做饿汉式单例类。或者是在 get 方法中才 new instance,然后返回这个对象,和懒汉字一样,不主动做事,需要调用 get 方法的时候,才 new 对象,这就叫做懒汉式单例类。

      如下是懒汉式单例类

      //单例模式示例
      class Singleton
      {
      public:
          static Singleton * getInstance()
          {
              if (instance == NULL) {
                  instance = new Singleton();
              }
      
              return instance;
          }
      
      private:
          //私有的构造函数,防止外人私自调用
          Singleton()
          {
              cout << "实例化了" << count << "个对象!" << endl;
              count++;
          }
          //声明一个静态实例,静态函数只能使用静态的数据成员。整个类中静态成员只有一个实例,通常在实现源文件中被初始化。
          static Singleton *instance;
          //记录实例化的对象
          int count = 1;
      };
      
      Singleton * Singleton::instance = NULL;
      
      int main(void)
      {
          Singleton::getInstance();
          Singleton::getInstance();
          Singleton::getInstance();
          Singleton::getInstance();
      
          return 0;
      }

      实例化了1个对象!

      Program ended with exit code: 0

      小结:

      懒汉式单例模式是用时间换取控件,饿汉式单例模式,是用空间换取时间。

      继续分析,考虑多线程下的懒汉式单例模式

      上述代码在单线程的情况下,运行正常,但是遇到了多线程就出问题,假设有两个线程同时运行了这个单例类,同时运行到了判断 if 语句,并且当时,instance 实例确实没有被初始化呢,那么两个线程都会去运行并创建实例,此时就不满足单例类的要求了。那么我们需要写上线程同步的功能。

      //考虑到多线程情形下的单例模式
      class Singleton
      {
      public:
          //get 方法
          static Singleton * getInstance(){
              //联系互斥信号量机制,给代码加锁
              lock();
              //判断 null
              if (NULL == instance) {
                  //判断类没有生成对象,才实例化对象,否则不再实例化
                  instance = new Singleton();
              }
              //使用完毕,解锁
              unlock();
              //返回一个实例化的对象
              return instance;
          }
      private:
          //声明对象计数器
          int count = 0;
          //声明一个静态的实例
          static Singleton *instance;
          //私有构造函数
          Singleton(){
              count++;
              cout << "实例化了" << count << "个对象!" << endl;
          }
      };
      //初始化 instance
      Singleton * Singleton::instance = NULL;

      此时,还是有 ab 两个线程来运行这个单例类,由于在同一时刻,只有一个线程能拿到同步锁(互斥信号量机制),a 拿到了同步锁,b 只能等待,如果 a发现实例还没创建,a 就会创建一个实例,创建完毕,a 释放同步锁,然后 b 才能拿到同步锁,继续运行接下来的代码,b 发现 a 线程运行的时候,已经生成了一个实例,b 线程就不会重复创建实例了,这样就保证了我们在多线程环境中只能得到一个实例。

      继续分析多线程下的懒汉式单例模式

      代码中,每次 get 方法中,得到 instance,都要判断是否为空,且判断是否为空之前,都要先加同步锁,如果线程很多的时候,就要先等待加了同步锁的线程运行完毕,才能继续判断余下的线程,这样就会造成大量线程的阻塞,且加锁是个非常消耗时间的过程,应该尽量避免(除非很有必要的时候)。可行的办法是,双重判断方法。

      因为,只是在实例还没有创建的时候,需要加锁判断,保证每次只有一个线程创建实例,而当实例已经创建之后,其实就不需要加锁操作了。

      双重判断的线程安全的懒汉式单例模式

      class Singleton
      {
      public:
          //get 方法
          static Singleton * getInstance(){
              //先判断一次 null,只有 null 的时候需要加锁,其他的时候,其实不需要加锁
              if (NULL == instance) {
                  //联系互斥信号量机制,给代码加锁
                  lock();
                  //然后再次判断 null
                  if (NULL == instance) {
                      //判断类没有生成对象,才实例化对象,否则不再实例化
                      instance = new Singleton();
                  }
                  //使用完毕,解锁
                  unlock();
              }
                      //返回一个实例化的对象
              return instance;
          }
      private:
          //声明对象计数器
          int count = 0;
          //声明一个静态的实例
          static Singleton *instance;
          //私有构造函数
          Singleton(){
              count++;
              cout << "实例化了" << count << "个对象!" << endl;
          }
      };
      //初始化 instance
      Singleton * Singleton::instance = NULL;

      这样的双重检测机制,提高了单例模式在多线程下的效率,因为这样的代码,只需要在第一次创建实例的时候,需要加锁,其他的时候,线程无需排队等待加锁之后,再去判断了,比较高效。

      再看饿汉式的单例模式,之前看了懒汉式的单例类,是线程不安全的,通过加锁(双重锁),实现线程安全

      回忆饿汉式单例类:直接在静态区初始化 instance,然后通过 get 方法返回,这样这个类每次直接先生成一个对象,好像好久没吃饭的饿汉子,急着吃饭一样,急切的 new 对象,这叫做饿汉式单例类。

      class Singleton
      {
      public:
          //get 方法
          static Singleton * getInstance(){
              //返回一个实例化的对象
              return instance;
          }
      private:
          //声明一个静态的实例
          static Singleton *instance;
          //私有构造函数
          Singleton(){
      
          }
      };
      //每次先直接实例化instance,get 方法直接返回这个实例
      Singleton * Singleton::instance = new Singleton();

      注意:静态初始化实例可以保证线程安全,因为静态实例初始化在程序开始时进入主函数之前,就由主线程以单线程方式完成了初始化!饿汉式的单例类,也就是静态初始化实例保证其线程安全性,故在性能需求较高时,应使用这种模式,避免频繁的锁争夺。

      继续看单例模式

      上面的单例模式没有 destory() 方法,也就是说,貌似上面的单例类没有主动析构这个唯一实例!然而这就导致了一个问题,在程序结束之后,该单例对象没有delete,导致内存泄露!下面是一些大神的方法:一个妥善的方法是让这个类自己知道在合适的时候把自己删除,或者说把删除自己的操作挂在操作系统中的某个合适的点上,使其在恰当的时候被自动执行。

      我们知道,程序在结束的时候,系统会自动析构所有的全局变量。事实上,系统也会析构所有的类的静态成员变量,就像这些静态成员也是全局变量一样。如果在类的析构行为中有必须的操作,比如关闭文件,释放外部资源,那么上面的代码无法实现这个要求。我们需要一种方法,正常的删除该实例。利用这些特征,我们可以在单例类中定义一个这样的静态成员变量,而它的唯一工作就是在析构函数中删除单例类的实例。如下面的代码中的Garbage类:

      class Singleton
      {
      public:
          //get 方法
          static Singleton * getInstance(){
              //判断单例否
              if (NULL == instance) {
                  instance = new Singleton();
              }
              //返回一个实例化的对象
              return instance;
          }
          //c++ 嵌套的内部类,作用是删除单例类对象,Garbage被定义为Singleton的内嵌类,以防该类被在其他地方滥用。
          class Garbage
          {
          public:
              ~Garbage(){
                  if (Singleton::instance != NULL) {
                      cout << "单例类的唯一实例被析构了" << endl;
                      delete Singleton::instance;
                  }
              }
          };
      
      private:
          //单例类中声明一个触发垃圾回收类的静态成员变量,它的唯一工作就是在析构函数中删除单例类的实例,利用程序在结束时析构全局变量的特性,选择最终的释放时机;
          static Garbage garbage;
          //声明一个静态的实例
          static Singleton *instance;
          //单例类的私有构造函数
          Singleton(){
              cout << "调用了单例类的构造函数" << endl;
          }
          //单例类的私有析构函数
          ~Singleton(){
              cout << "调用了单例类的析构函数" << endl;
          }
      };
      //初始化内部的静态变量,目睹是启动删除的析构函数,如果不初始化,就不会被析构
      //内部类可以访问外部类的私有成员,外部类不能访问内部类的私有成员!
      Singleton::Garbage Singleton::garbage;
      //初始化instance为 null
      Singleton * Singleton::instance = NULL;
      
      int main(void)
      {
          Singleton *a = Singleton::getInstance();
          Singleton *b = Singleton::getInstance();
          Singleton *c = Singleton::getInstance();
      
          if (a == b) {
              cout << "a = b" << endl;
          }
      
          return 0;
      }

      调用了单例类的构造函数

      a = b

      单例类的唯一实例被析构了

      调用了单例类的析构函数

      Program ended with exit code: 0

      类Garbage被定义为Singleton的内嵌类,以防该类在其他地方滥用,程序运行结束时,系统会调用Singleton的静态成员garbage的析构函数,该析构函数会删除单例的唯一实例,使用这种方法释放单例对象有以下特征:

      1、在单例类内部定义专有的嵌套类;

      2、在单例类内定义私有的专门用于释放的静态成员;

      3、利用程序在结束时析构全局变量的特性,选择最终的释放时机;

      4、使用单例的代码不需要任何操作,不必关心对象的释放。

      其实,继续想单例类的实现,有的人会这样做:

      在程序结束时调一个专门的方法,这个方法里判断实例对象是否为 null,如果不为 null,就对返回的指针掉用delete操作。这样做可以实现删除单例的功能,但不仅很丑陋,而且容易出错。因为这样的附加代码很容易被忘记,而且也很难保证在delete之后,没有代码再调用GetInstance函数。不推荐直接的删除方法。

      继续查看单例模式:单例模式在实际开发过程中是很有用的

      单例模式的特征总结:

      1、一个类只有一个实例

      2、提供一个全局访问点

      3、禁止拷贝

      逐个分析:

      1、实现只有一个实例,需要做的事情:将构造函数声明为私有

      2、提供一个全局访问点,需要做的事情:类中创建静态成员和静态成员方法

      3、禁止拷贝:把拷贝构造函数声明为私有,并且不提供实现,将赋值运算符声明为私有,防止对象的赋值

      完整的单例类实现代码如下:

      class Singleton
      {
      public:
          //get 方法
          static Singleton * getInstance(){
              if (NULL == instance) {
                  lock();
                  //判断单例否
                  if (NULL == instance) {
                      instance = new Singleton();
                  }
                  unlock();
              }
              //返回一个实例化的对象
              return instance;
          }
          //c++ 嵌套的内部类,作用是删除单例类对象,Garbage被定义为Singleton的私有内嵌类,以防该类被在其他地方滥用。
          class Garbage
          {
          public:
              ~Garbage(){
                  if (Singleton::instance != NULL) {
                      cout << "单例类的唯一实例被析构了" << endl;
                      delete Singleton::instance;
                  }
              }
          };
          
      private:
          //单例类中定义一个这样的静态成员变量,而它的唯一工作就是在析构函数中删除单例类的实例,利用程序在结束时析构全局变量的特性,选择最终的释放时机;
          static Garbage garbage;
          //声明一个静态的实例
          static Singleton *instance;
          //单例类的私有构造函数
          Singleton(){
              cout << "调用了单例类的构造函数" << endl;
          }
          //单例类的私有析构函数
          ~Singleton(){
              cout << "调用了单例类的析构函数" << endl;
          }
          //把拷贝构造函数声明为私有,就可以禁止外人拷贝对象,也不用实现它,声明私有即可
          Singleton(const Singleton &copy);
          //把赋值运算符重载为私有的,防止对象之间的赋值操作
          Singleton & operator=(const Singleton &other);
      };
      //初始化内部似有泪的静态变量,目睹是启动删除的析构函数,如果不初始化,就不会被析构
      //内部类可以访问外部类的私有成员,外部类不能访问内部类的私有成员!
      Singleton::Garbage Singleton::garbage;
      //初始化instance为 null
      Singleton * Singleton::instance = NULL;
      
      int main(void)
      {
          Singleton *a = Singleton::getInstance();
          Singleton *b = Singleton::getInstance();
          Singleton *c = Singleton::getInstance();
          
          if (a == b) {
              cout << "a = b" << endl;
          }
          
          return 0;
      }

      单例类de测试,两个方法:

      1、实例化多个对象,看调用了几次构造函数,如果只调用一次,说明只创建一个实例

      2、单步跟踪,查看对象的地址,是否一样,一样则为一个对象

      总结

      本篇文章就到这里了,希望能够给你带来帮助,也希望您能够多多关注海外IDC网的更多内容!

      【转自:http://www.nextecloud.cn/jap.html 欢迎转载】