Python机器学习NLP自然语言处理Word2vec电影影评建模

编辑: admin 分类: python 发布时间: 2021-12-23 来源:互联网
目录
  • 概述
  • 词向量
  • 词向量维度
  • 代码实现
    • 预处理
    • 主程序

概述

从今天开始我们将开启一段自然语言处理 (NLP) 的旅程. 自然语言处理可以让来处理, 理解, 以及运用人类的语言, 实现机器语言和人类语言之间的沟通桥梁.

在这里插入图片描述

词向量

我们先来说说词向量究竟是什么. 当我们把文本交给算法来处理的时候, 计算机并不能理解我们输入的文本, 词向量就由此而生了. 简单的来说, 词向量就是将词语转换成数字组成的向量.

在这里插入图片描述

当我们描述一个人的时候, 我们会使用身高体重等种种指标, 这些指标就可以当做向量. 有了向量我们就可以使用不同方法来计算相似度.

在这里插入图片描述

那我们如何来描述语言的特征呢? 我们把语言分割成一个个词, 然后在词的层面上构建特征.

在这里插入图片描述

词向量维度

词向量的维度越高, 其所能提供的信息也就越多, 计算结果的可靠性就更值得信赖.

50 维的词向量:

在这里插入图片描述

用热度图表示一下:

在这里插入图片描述

在这里插入图片描述

从上图我们可以看出, 相似的词在特征表达中比较相似. 由此也可以证明词的特征是有意义的.

代码实现

预处理

import numpy as np
import pandas as pd
import itertools
import re
from bs4 import BeautifulSoup
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
import nltk
# 停用词
stop_words = pd.read_csv("data/stopwords.txt", index_col=False, quoting=3, sep="\n", names=["stop_words"])
stop_words = [word.strip() for word in stop_words["stop_words"].values]
def load_train_data():
    """读取训练数据"""
    # 语料
    data = pd.read_csv("data/labeledTrainData.tsv", sep="\t", escapechar="\\")
    print(data[:5])
    print("训练评论数量:", len(data))  # 25,000
    return data
def load_test_data():
    # 语料
    data = pd.read_csv("data/unlabeledTrainData.tsv", sep="\t", escapechar="\\")
    print("测试评论数量:", len(data))  # 50,000
    return data
def pre_process(text):
    # 去除网页链接
    text = BeautifulSoup(text, "html.parser").get_text()
    # 去除标点
    text = re.sub("[^a-zA-Z]", " ", text)
    # 分词
    words = text.lower().split()
    # 去除停用词
    words = [w for w in words if w not in stop_words]
    return " ".join(words)
def split_train_data():
    # 读取文件
    data = pd.read_csv("data/train.csv")
    print(data.head())
    # 抽取bag of words特征
    vec = CountVectorizer(max_features=5000)
    # 拟合
    vec.fit(data["review"])
    # 转换
    train_data_features = vec.transform(data["review"]).toarray()
    print(train_data_features.shape)
    # 词袋
    print(vec.get_feature_names())
    # 分割数据集
    X_train, X_test, y_train, y_test = train_test_split(train_data_features, data["sentiment"], test_size=0.2,
                                                        random_state=0)
    return X_train, X_test, y_train, y_test
def test():
    # 读取测试数据
    data = pd.read_csv("data/test.csv")
    print(data.head())
    tokenizer = nltk.data.load("tokenizers/punkt/english.pickle")
    # 分词
    def split_sentences(review):
        raw_sentences = tokenizer.tokenize(review.strip())
        return sentences
    sentences = sum(data["review"][:10].apply(split_sentences), [])
def visualize(cm, classes, title="Confusion matrix", cmap=plt.cm.Blues):
    plt.imshow(cm, interpolation="nearest", cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=0)
    plt.yticks(tick_marks, classes)
    thresh = cm.max()
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black")
    plt.tight_layout()
    plt.ylabel("True label")
    plt.xlabel("Predicted label")
    plt.show()
if __name__ == '__main__':
    # # 处理训练数据
    # train_data = load_train_data()
    # train_data["review"] = train_data["review"].apply(pre_process)
    # print(train_data.head())
    #
    # # 保存
    # train_data.to_csv("data/train.csv")
    # # 处理训练数据
    # test_data = load_test_data()
    # test_data["review"] =  test_data["review"].apply(pre_process)
    # print( test_data.head())
    #
    # # 保存
    # test_data.to_csv("data/test.csv")
    split_train_data()

主程序

import pandas as pd
import nltk
from gensim.models.word2vec import Word2Vec
def pre_process():
    """预处理"""
    # 读取测试数据
    data = pd.read_csv("data/test.csv")
    print(data.head())
    # 存放结果
    result = []
    # 分词
    for line in data["review"]:
        result.append(nltk.word_tokenize(line))
    return result
def main():
    # 获取分词语料
    word_list = pre_process()
    # 设定词向量训练的参数
    num_features = 300  # Word vector dimensionality
    min_word_count = 40  # Minimum word count
    num_workers = 4  # Number of threads to run in parallel
    context = 10  # Context window size
    model_name = '{}features_{}minwords_{}context.model'.format(num_features, min_word_count, context)
    # 创建w2c模型
    model = Word2Vec(sentences=word_list, workers=num_workers,
                     vector_size=num_features, min_count=min_word_count,
                     window=context)
    # 保存模型
    model.save(model_name)
def test():
    # 加载模型
    model = Word2Vec.load("300features_40minwords_10context.model")
    # 不匹配
    match = model.wv.doesnt_match(['man','woman','child','kitchen'])
    print(match)
    # 最相似
    print(model.wv.most_similar("boy"))
    print(model.wv.most_similar("bad"))
if __name__ == '__main__':
    test()

输出结果:

2021-09-16 20:36:40.791181: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
   Unnamed: 0      id  sentiment                                             review
0           0  5814_8          1  stuff moment mj ve started listening music wat...
1           1  2381_9          1  classic war worlds timothy hines entertaining ...
2           2  7759_3          0  film starts manager nicholas bell investors ro...
3           3  3630_4          0  assumed praised film filmed opera didn read do...
4           4  9495_8          1  superbly trashy wondrously unpretentious explo...
73423
[[15958   623 12368  4459   622   835    30   152  2097  2408 35364 57143
    892  2997   766 42223   967   266 25276   157   108   696  1631   198
   2576  9850  3745    27    52  3789  9503   696   526    52   354   862
    474    38     2   101 11027   696  6456 22390   969  5873  5376  4044
    623  1401  2069   718   618    92    96   138  1345   714    96    18
    123  1770   518  3314   354   983  1888   520    83    73   983     2
     28 28635  1044  2054   401  1071    85  8565  8957  7226   804    46
    224   447  2113  2691  5742    10     5  3217   943  5045   980   373
     28   873   438   389    41    23    19    56   122     9   253 27176
   2149    19    90 57144    53  4874   696  6558   136  2067 10682    48
    518  1482     9  3668  1587  3786     2   110    10   506 25150 20744
    340    33   316    17  4824  3892   978    14 10150  2596   766 42223
   5082  4784   700   198  6276  5254   700   198  2334   696 20879     5
     86    30     2   583  2872 30601    30    86    28    83    73    32
     96    18     2   224   708    30   167     7  3791   216    45   513
      2  2310   513  1860  4536  1925   414  1321   578  7434   851   696
    997  5354 57145   162    30     2    91  1839]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1   357   684
     28  3027 10371  5801 20987 21481 19800     1  3027 10371 21481 19800
   1719   204    49   168   250  7355  1547   374   401  5415    24  1719
     24    49   168  7355  1547  3610 21481 19800   123   204    49   168
   1102  1547   656   213  5432  5183    61     4 66166    20    36    56
      7  5183  2025   116  5031    11    45   782]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0  2189     1   586
   2189    15  1855   615   400  5394  3797 23866  2892   481  2892   810
  22020 17820     1   741   231    20   746  2028  1040  6089   816  5555
  41772  1762    26   811   288     8   796    45]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0    85   310  1734    78  1906    78  1906  1412  1985
     78  7644  1412   244  9287  7092  6374  2584  6183  3795  3080  1288
   2217  3534  6005  4851  1543   762  1797 26144   699   237  6745     7
   1288  1415  9003  5623   237  1669 17987   874   421   234  1278   347
   9287  1609  7100  1065    75  9800  3344    76  5021    47   380  3015
  14366  6523  1396   851 22330  3465 20861  7106  6374   340    60 19035
   3089  5081     3     7  1695 10735  3582    92  6374   176  8348    60
   1491 11540 28826  1847   464  4099    22  3561    51    22  1538  1027
  38926  2195  1966  3089    33 19894   287   142  6374   184    37  4025
     67   325    37   421   549 21976    28  7744  2466 31533    27  2836
   1339  6374 14805  1670  4666    60    33    12]
 [    0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     0     0     0
      0     0     0     0     0     0     0     0     0     1    27    52
   4639     9  5774  1545  8575   855 10463  2688 21019  1542  1701   653
   9765     9   189   706  2212 18342   566   437  2639  4311  4504 26110
    307   496   893   317     1    27    52   587]]
[[0. 1.]
 [0. 1.]
 [0. 1.]
 [1. 0.]
 [0. 1.]]
2021-09-16 20:36:46.488438: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-09-16 20:36:46.489070: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: /usr/lib/x86_64-linux-gnu/libcuda.so.1: file too short; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64/:/usr/lib/x86_64-linux-gnu
2021-09-16 20:36:46.489097: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303)
2021-09-16 20:36:46.489128: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (313c6f2d15e2): /proc/driver/nvidia/version does not exist
2021-09-16 20:36:46.489488: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations:  AVX512F
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-09-16 20:36:46.493241: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (None, None, 200)         14684800  
_________________________________________________________________
lstm (LSTM)                  (None, 200)               320800    
_________________________________________________________________
dropout (Dropout)            (None, 200)               0         
_________________________________________________________________
dense (Dense)                (None, 64)                12864     
_________________________________________________________________
dense_1 (Dense)              (None, 2)                 130       
=================================================================
Total params: 15,018,594
Trainable params: 15,018,594
Non-trainable params: 0
_________________________________________________________________
None
2021-09-16 20:36:46.792534: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2)
2021-09-16 20:36:46.830442: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2300000000 Hz
Epoch 1/2
313/313 [==============================] - 101s 315ms/step - loss: 0.5581 - accuracy: 0.7229 - val_loss: 0.3703 - val_accuracy: 0.8486
Epoch 2/2
313/313 [==============================] - 98s 312ms/step - loss: 0.2174 - accuracy: 0.9195 - val_loss: 0.3016 - val_accuracy: 0.8822

以上就是Python机器学习NLP自然语言处理Word2vec电影影评建模的详细内容,更多关于NLP自然语言处理的资料请关注hwidc其它相关文章!

【来源:美国站群服务器 请说明出处】