利用Python将图片批量转化成素描图的过程记录

编辑: admin 分类: python 发布时间: 2021-12-23 来源:互联网
目录
  • 前言
  • 程序
    • Method 1
    • Method 2
    • 完整代码
  • 结果
    • 总结 

      前言

      正常图片转化成素描图片无非对图片像素的处理,矩阵变化而已。目前很多拍照修图App都有这一功能,核心代码不超30行。如下利用 Python 实现读取一张图片并将其转化成素描图片。至于批处理也简单,循环读取文件夹里的图片处理即可。具体代码可以去我的 GitHub 下载。

      程序

      Method 1

      def plot_sketch(origin_picture, out_picture) :
          a = np.asarray(Image.open(origin_picture).convert('L')).astype('float')
          depth = 10.  # (0-100)
          grad = np.gradient(a)  # 取图像灰度的梯度值
          grad_x, grad_y = grad  # 分别取横纵图像梯度值
          grad_x = grad_x * depth / 100.
          grad_y = grad_y * depth / 100.
          A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.0)
          uni_x = grad_x / A
          uni_y = grad_y / A
          uni_z = 1. / A
      
          vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
          vec_az = np.pi / 4.  # 光源的方位角度,弧度值
          dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对x 轴的影响
          dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对y 轴的影响
          dz = np.sin(vec_el)  # 光源对z 轴的影响
      
          b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化
          b = b.clip(0, 255)
      
          im = Image.fromarray(b.astype('uint8'))  # 重构图像
          im.save(out_picture)
          print("转换成功,请查看 : ", out_picture)
      
      

      Method 2

      def plot_sketch2(origin_picture, out_picture, alpha=1.0):
          img = Image.open(origin_picture)
          blur = 20
          img1 = img.convert('L')  # 图片转换成灰色
          img2 = img1.copy()
          img2 = ImageOps.invert(img2)
          for i in range(blur):  # 模糊度
              img2 = img2.filter(ImageFilter.BLUR)
          width, height = img1.size
          for x in range(width):
              for y in range(height):
                  a = img1.getpixel((x, y))
                  b = img2.getpixel((x, y))
                  img1.putpixel((x, y), min(int(a*255/(256-b*alpha)), 255))
          img1.save(out_picture)
      
      

      完整代码

      from PIL import Image, ImageFilter, ImageOps
      import numpy as np
      import os
      
      
      def plot_sketch(origin_picture, out_picture) :
          a = np.asarray(Image.open(origin_picture).convert('L')).astype('float')
          depth = 10.  # (0-100)
          grad = np.gradient(a)  # 取图像灰度的梯度值
          grad_x, grad_y = grad  # 分别取横纵图像梯度值
          grad_x = grad_x * depth / 100.
          grad_y = grad_y * depth / 100.
          A = np.sqrt(grad_x ** 2 + grad_y ** 2 + 1.0)
          uni_x = grad_x / A
          uni_y = grad_y / A
          uni_z = 1. / A
      
          vec_el = np.pi / 2.2  # 光源的俯视角度,弧度值
          vec_az = np.pi / 4.  # 光源的方位角度,弧度值
          dx = np.cos(vec_el) * np.cos(vec_az)  # 光源对x 轴的影响
          dy = np.cos(vec_el) * np.sin(vec_az)  # 光源对y 轴的影响
          dz = np.sin(vec_el)  # 光源对z 轴的影响
      
          b = 255 * (dx * uni_x + dy * uni_y + dz * uni_z)  # 光源归一化
          b = b.clip(0, 255)
      
          im = Image.fromarray(b.astype('uint8'))  # 重构图像
          im.save(out_picture)
          print("转换成功,请查看 : ", out_picture)
      
      
      def plot_sketch2(origin_picture, out_picture, alpha=1.0):
          img = Image.open(origin_picture)
          blur = 20
          img1 = img.convert('L')  # 图片转换成灰色
          img2 = img1.copy()
          img2 = ImageOps.invert(img2)
          for i in range(blur):  # 模糊度
              img2 = img2.filter(ImageFilter.BLUR)
          width, height = img1.size
          for x in range(width):
              for y in range(height):
                  a = img1.getpixel((x, y))
                  b = img2.getpixel((x, y))
                  img1.putpixel((x, y), min(int(a*255/(256-b*alpha)), 255))
          img1.save(out_picture)
      
      
      if __name__ == '__main__':
          origin_picture = "pictures/5.jpg"
          out_picture = "sketchs/sketch.jpg"
          plot_sketch(origin_picture, out_picture)
      
          origin_path = "./pictures"
          out_path = "./sketchs"
          dirs = os.listdir(origin_path)
          for file in dirs:
              origin_picture = origin_path + "/" + file
              out_picture = out_path + "/" + "sketch_of_" + file
              plot_sketch2(origin_picture, out_picture)
      
      
      

      结果








      总结 

      到此这篇关于利用Python将图片批量转化成素描图的文章就介绍到这了,更多相关Python图片批量转素描图内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

      【文章原创作者:十堰网站优化 请说明出处】