python实现A*寻路算法

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网
目录
  • A* 算法简介
  • 关键代码介绍
    • 保存基本信息的地图类
    • 搜索到的节点类
    • 算法主函数介绍
    • 代码的初始化
  • 完整代码

    A* 算法简介

    A* 算法需要维护两个数据结构:OPEN 集和 CLOSED 集。OPEN 集包含所有已搜索到的待检测节点。初始状态,OPEN集仅包含一个元素:开始节点。CLOSED集包含已检测的节点。初始状态,CLOSED集为空。每个节点还包含一个指向父节点的指针,以确定追踪关系。

    A* 算法会给每个搜索到的节点计算一个G+H 的和值F:

    • F = G + H
    • G:是从开始节点到当前节点的移动量。假设开始节点到相邻节点的移动量为1,该值会随着离开始点越来越远而增大。
    • H:是从当前节点到目标节点的移动量估算值。
      • 如果允许向4邻域的移动,使用曼哈顿距离。
      • 如果允许向8邻域的移动,使用对角线距离。

    算法有一个主循环,重复下面步骤直到到达目标节点:
    1 每次从OPEN集中取一个最优节点n(即F值最小的节点)来检测。
    2 将节点n从OPEN集中移除,然后添加到CLOSED集中。
    3 如果n是目标节点,那么算法结束。
    4 否则尝试添加节点n的所有邻节点n'。

    • 邻节点在CLOSED集中,表示它已被检测过,则无需再添加。
    • 邻节点在OPEN集中:
      • 如果重新计算的G值比邻节点保存的G值更小,则需要更新这个邻节点的G值和F值,以及父节点;
      • 否则不做操作
    • 否则将该邻节点加入OPEN集,设置其父节点为n,并设置它的G值和F值。

    有一点需要注意,如果开始节点到目标节点实际是不连通的,即无法从开始节点移动到目标节点,那算法在第1步判断获取到的节点n为空,就会退出

    关键代码介绍

    保存基本信息的地图类

    地图类用于随机生成一个供寻路算法工作的基础地图信息

    先创建一个map类, 初始化参数设置地图的长度和宽度,并设置保存地图信息的二维数据map的值为0, 值为0表示能移动到该节点。

    class Map():
    	def __init__(self, width, height):
    		self.width = width
    		self.height = height
    		self.map = [[0 for x in range(self.width)] for y in range(self.height)]
    

    在map类中添加一个创建不能通过节点的函数,节点值为1表示不能移动到该节点。

    	def createBlock(self, block_num):
    		for i in range(block_num):
    			x, y = (randint(0, self.width-1), randint(0, self.height-1))
    			self.map[y][x] = 1
    

    在map类中添加一个显示地图的函数,可以看到,这边只是简单的打印出所有节点的值,值为0或1的意思上面已经说明,在后面显示寻路算法结果时,会使用到值2,表示一条从开始节点到目标节点的路径。

    	def showMap(self):
    		print("+" * (3 * self.width + 2))
    		for row in self.map:
    			s = '+'
    			for entry in row:
    				s += ' ' + str(entry) + ' '
    			s += '+'
    			print(s)
    		print("+" * (3 * self.width + 2))
    

    添加一个随机获取可移动节点的函数

    	def generatePos(self, rangeX, rangeY):
    		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
    		while self.map[y][x] == 1:
    			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
    		return (x , y)
    

    搜索到的节点类

    每一个搜索到将到添加到OPEN集的节点,都会创建一个下面的节点类,保存有entry的位置信息(x,y),计算得到的G值和F值,和该节点的父节点(pre_entry)。

    class SearchEntry():
    	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
    		self.x = x
    		self.y = y
    		# cost move form start entry to this entry
    		self.g_cost = g_cost
    		self.f_cost = f_cost
    		self.pre_entry = pre_entry
    	
    	def getPos(self):
    		return (self.x, self.y)
    

    算法主函数介绍

    下面就是上面算法主循环介绍的代码实现,OPEN集和CLOSED集的数据结构使用了字典,在一般情况下,查找,添加和删除节点的时间复杂度为O(1), 遍历的时间复杂度为O(n), n为字典中对象数目。

    def AStarSearch(map, source, dest):
    	...
    	openlist = {}
    	closedlist = {}
    	location = SearchEntry(source[0], source[1], 0.0)
    	dest = SearchEntry(dest[0], dest[1], 0.0)
    	openlist[source] = location
    	while True:
    		location = getFastPosition(openlist)
    		if location is None:
    			# not found valid path
    			print("can't find valid path")
    			break;
    		
    		if location.x == dest.x and location.y == dest.y:
    			break
    		
    		closedlist[location.getPos()] = location
    		openlist.pop(location.getPos())
    		addAdjacentPositions(map, location, dest, openlist, closedlist)
    	
    	#mark the found path at the map
    	while location is not None:
    		map.map[location.y][location.x] = 2
    		location = location.pre_entry
    

    我们按照算法主循环的实现来一个个讲解用到的函数。
    下面函数就是从OPEN集中获取一个F值最小的节点,如果OPEN集会空,则返回None。

    	# find a least cost position in openlist, return None if openlist is empty
    	def getFastPosition(openlist):
    		fast = None
    		for entry in openlist.values():
    			if fast is None:
    				fast = entry
    			elif fast.f_cost > entry.f_cost:
    				fast = entry
    		return fast
    

    addAdjacentPositions 函数对应算法主函数循环介绍中的尝试添加节点n的所有邻节点n'。

    	# add available adjacent positions
    	def addAdjacentPositions(map, location, dest, openlist, closedlist):
    		poslist = getPositions(map, location)
    		for pos in poslist:
    			# if position is already in closedlist, do nothing
    			if isInList(closedlist, pos) is None:
    				findEntry = isInList(openlist, pos)
    				h_cost = calHeuristic(pos, dest)
    				g_cost = location.g_cost + getMoveCost(location, pos)
    				if findEntry is None :
    					# if position is not in openlist, add it to openlist
    					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
    				elif findEntry.g_cost > g_cost:
    					# if position is in openlist and cost is larger than current one,
    					# then update cost and previous position
    					findEntry.g_cost = g_cost
    					findEntry.f_cost = g_cost + h_cost
    					findEntry.pre_entry = location
    

    getPositions 函数获取到所有能够移动的节点,这里提供了2种移动的方式:

    • 允许上,下,左,右 4邻域的移动
    • 允许上,下,左,右,左上,右上,左下,右下 8邻域的移动
    	def getNewPosition(map, locatioin, offset):
    		x,y = (location.x + offset[0], location.y + offset[1])
    		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:
    			return None
    		return (x, y)
    		
    	def getPositions(map, location):
    		# use four ways or eight ways to move
    		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
    		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
    		poslist = []
    		for offset in offsets:
    			pos = getNewPosition(map, location, offset)
    			if pos is not None:			
    				poslist.append(pos)
    		return poslist
    

    isInList 函数判断节点是否在OPEN集 或CLOSED集中

    	# check if the position is in list
    	def isInList(list, pos):
    		if pos in list:
    			return list[pos]
    		return None
    

    calHeuristic 函数简单得使用了曼哈顿距离,这个后续可以进行优化。
    getMoveCost 函数根据是否是斜向移动来计算消耗(斜向就是2的开根号,约等于1.4)

    	# imporve the heuristic distance more precisely in future
    	def calHeuristic(pos, dest):
    		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
    		
    	def getMoveCost(location, pos):
    		if location.x != pos[0] and location.y != pos[1]:
    			return 1.4
    		else:
    			return 1
    

    代码的初始化

    可以调整地图的长度,宽度和不可移动节点的数目。
    可以调整开始节点和目标节点的取值范围。

    WIDTH = 10
    HEIGHT = 10
    BLOCK_NUM = 15
    map = Map(WIDTH, HEIGHT)
    map.createBlock(BLOCK_NUM)
    map.showMap()
    
    source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
    dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
    print("source:", source)
    print("dest:", dest)
    AStarSearch(map, source, dest)
    map.showMap()
    

    执行的效果图如下,第一个表示随机生成的地图,值为1的节点表示不能移动到该节点。
    第二个图中值为2的节点表示找到的路径。

    在这里插入图片描述

    完整代码

    使用python3.7编译

    from random import randint
    
    class SearchEntry():
    	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
    		self.x = x
    		self.y = y
    		# cost move form start entry to this entry
    		self.g_cost = g_cost
    		self.f_cost = f_cost
    		self.pre_entry = pre_entry
    	
    	def getPos(self):
    		return (self.x, self.y)
    
    class Map():
    	def __init__(self, width, height):
    		self.width = width
    		self.height = height
    		self.map = [[0 for x in range(self.width)] for y in range(self.height)]
    	
    	def createBlock(self, block_num):
    		for i in range(block_num):
    			x, y = (randint(0, self.width-1), randint(0, self.height-1))
    			self.map[y][x] = 1
    	
    	def generatePos(self, rangeX, rangeY):
    		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
    		while self.map[y][x] == 1:
    			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
    		return (x , y)
    
    	def showMap(self):
    		print("+" * (3 * self.width + 2))
    
    		for row in self.map:
    			s = '+'
    			for entry in row:
    				s += ' ' + str(entry) + ' '
    			s += '+'
    			print(s)
    
    		print("+" * (3 * self.width + 2))
    	
    
    def AStarSearch(map, source, dest):
    	def getNewPosition(map, locatioin, offset):
    		x,y = (location.x + offset[0], location.y + offset[1])
    		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:
    			return None
    		return (x, y)
    		
    	def getPositions(map, location):
    		# use four ways or eight ways to move
    		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
    		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
    		poslist = []
    		for offset in offsets:
    			pos = getNewPosition(map, location, offset)
    			if pos is not None:			
    				poslist.append(pos)
    		return poslist
    	
    	# imporve the heuristic distance more precisely in future
    	def calHeuristic(pos, dest):
    		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
    		
    	def getMoveCost(location, pos):
    		if location.x != pos[0] and location.y != pos[1]:
    			return 1.4
    		else:
    			return 1
    
    	# check if the position is in list
    	def isInList(list, pos):
    		if pos in list:
    			return list[pos]
    		return None
    	
    	# add available adjacent positions
    	def addAdjacentPositions(map, location, dest, openlist, closedlist):
    		poslist = getPositions(map, location)
    		for pos in poslist:
    			# if position is already in closedlist, do nothing
    			if isInList(closedlist, pos) is None:
    				findEntry = isInList(openlist, pos)
    				h_cost = calHeuristic(pos, dest)
    				g_cost = location.g_cost + getMoveCost(location, pos)
    				if findEntry is None :
    					# if position is not in openlist, add it to openlist
    					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
    				elif findEntry.g_cost > g_cost:
    					# if position is in openlist and cost is larger than current one,
    					# then update cost and previous position
    					findEntry.g_cost = g_cost
    					findEntry.f_cost = g_cost + h_cost
    					findEntry.pre_entry = location
    	
    	# find a least cost position in openlist, return None if openlist is empty
    	def getFastPosition(openlist):
    		fast = None
    		for entry in openlist.values():
    			if fast is None:
    				fast = entry
    			elif fast.f_cost > entry.f_cost:
    				fast = entry
    		return fast
    
    	openlist = {}
    	closedlist = {}
    	location = SearchEntry(source[0], source[1], 0.0)
    	dest = SearchEntry(dest[0], dest[1], 0.0)
    	openlist[source] = location
    	while True:
    		location = getFastPosition(openlist)
    		if location is None:
    			# not found valid path
    			print("can't find valid path")
    			break;
    		
    		if location.x == dest.x and location.y == dest.y:
    			break
    		
    		closedlist[location.getPos()] = location
    		openlist.pop(location.getPos())
    		addAdjacentPositions(map, location, dest, openlist, closedlist)
    		
    	#mark the found path at the map
    	while location is not None:
    		map.map[location.y][location.x] = 2
    		location = location.pre_entry	
    
    	
    WIDTH = 10
    HEIGHT = 10
    BLOCK_NUM = 15
    map = Map(WIDTH, HEIGHT)
    map.createBlock(BLOCK_NUM)
    map.showMap()
    
    source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
    dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
    print("source:", source)
    print("dest:", dest)
    AStarSearch(map, source, dest)
    map.showMap()
    

    到此这篇关于python实现A*寻路算法的文章就介绍到这了,更多相关python A*寻路算法内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

    【本文转自:http://www.1234xp.com/jja.html 转载请说明出处】