Python机器学习之基于Pytorch实现猫狗分类
目录
- 一、环境配置
- 二、数据集的准备
- 三、猫狗分类的实例
- 四、实现分类预测测试
- 五、参考资料
一、环境配置
安装Anaconda
具体安装过程,请点击本文
配置Pytorch
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torch pip install -i https://pypi.tuna.tsinghua.edu.cn/simple torchvision
二、数据集的准备
1.数据集的下载
kaggle网站的数据集下载地址:
https://www.kaggle.com/lizhensheng/-2000
2.数据集的分类
将下载的数据集进行解压操作,然后进行分类
分类如下(每个文件夹下包括cats和dogs文件夹)
三、猫狗分类的实例
导入相应的库
# 导入库 import torch.nn.functional as F import torch.optim as optim import torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.transforms as transforms import torchvision.datasets as datasets
设置超参数
# 设置超参数 #每次的个数 BATCH_SIZE = 20 #迭代次数 EPOCHS = 10 #采用cpu还是gpu进行计算 DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
图像处理与图像增强
# 数据预处理 transform = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ])
读取数据集和导入数据
# 读取数据 dataset_train = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\train', transform) print(dataset_train.imgs) # 对应文件夹的label print(dataset_train.class_to_idx) dataset_test = datasets.ImageFolder('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\validation', transform) # 对应文件夹的label print(dataset_test.class_to_idx) # 导入数据 train_loader = torch.utils.data.DataLoader(dataset_train, batch_size=BATCH_SIZE, shuffle=True) test_loader = torch.utils.data.DataLoader(dataset_test, batch_size=BATCH_SIZE, shuffle=True)
定义网络模型
# 定义网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x modellr = 1e-4 # 实例化模型并且移动到GPU model = ConvNet().to(DEVICE) # 选择简单暴力的Adam优化器,学习率调低 optimizer = optim.Adam(model.parameters(), lr=modellr)
调整学习率
def adjust_learning_rate(optimizer, epoch): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" modellrnew = modellr * (0.1 ** (epoch // 5)) print("lr:",modellrnew) for param_group in optimizer.param_groups: param_group['lr'] = modellrnew
定义训练过程
# 定义训练过程 def train(model, device, train_loader, optimizer, epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device).float().unsqueeze(1) optimizer.zero_grad() output = model(data) # print(output) loss = F.binary_cross_entropy(output, target) loss.backward() optimizer.step() if (batch_idx + 1) % 10 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, (batch_idx + 1) * len(data), len(train_loader.dataset), 100. * (batch_idx + 1) / len(train_loader), loss.item())) # 定义测试过程 def val(model, device, test_loader): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device).float().unsqueeze(1) output = model(data) # print(output) test_loss += F.binary_cross_entropy(output, target, reduction='mean').item() pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in output]).to(device) correct += pred.eq(target.long()).sum().item() print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
定义保存模型和训练
# 训练 for epoch in range(1, EPOCHS + 1): adjust_learning_rate(optimizer, epoch) train(model, DEVICE, train_loader, optimizer, epoch) val(model, DEVICE, test_loader) torch.save(model, 'E:\\Cat_And_Dog\\kaggle\\model.pth')
训练结果
四、实现分类预测测试
准备预测的图片进行测试
from __future__ import print_function, division from PIL import Image from torchvision import transforms import torch.nn.functional as F import torch import torch.nn as nn import torch.nn.parallel # 定义网络 class ConvNet(nn.Module): def __init__(self): super(ConvNet, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3) self.max_pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(32, 64, 3) self.max_pool2 = nn.MaxPool2d(2) self.conv3 = nn.Conv2d(64, 64, 3) self.conv4 = nn.Conv2d(64, 64, 3) self.max_pool3 = nn.MaxPool2d(2) self.conv5 = nn.Conv2d(64, 128, 3) self.conv6 = nn.Conv2d(128, 128, 3) self.max_pool4 = nn.MaxPool2d(2) self.fc1 = nn.Linear(4608, 512) self.fc2 = nn.Linear(512, 1) def forward(self, x): in_size = x.size(0) x = self.conv1(x) x = F.relu(x) x = self.max_pool1(x) x = self.conv2(x) x = F.relu(x) x = self.max_pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.max_pool3(x) x = self.conv5(x) x = F.relu(x) x = self.conv6(x) x = F.relu(x) x = self.max_pool4(x) # 展开 x = x.view(in_size, -1) x = self.fc1(x) x = F.relu(x) x = self.fc2(x) x = torch.sigmoid(x) return x # 模型存储路径 model_save_path = 'E:\\Cat_And_Dog\\kaggle\\model.pth' # ------------------------ 加载数据 --------------------------- # # Data augmentation and normalization for training # Just normalization for validation # 定义预训练变换 # 数据预处理 transform_test = transforms.Compose([ transforms.Resize(100), transforms.RandomVerticalFlip(), transforms.RandomCrop(50), transforms.RandomResizedCrop(150), transforms.ColorJitter(brightness=0.5, contrast=0.5, hue=0.5), transforms.ToTensor(), transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) class_names = ['cat', 'dog'] # 这个顺序很重要,要和训练时候的类名顺序一致 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # ------------------------ 载入模型并且训练 --------------------------- # model = torch.load(model_save_path) model.eval() # print(model) image_PIL = Image.open('E:\\Cat_And_Dog\\kaggle\\cats_and_dogs_small\\test\\cats\\cat.1500.jpg') # image_tensor = transform_test(image_PIL) # 以下语句等效于 image_tensor = torch.unsqueeze(image_tensor, 0) image_tensor.unsqueeze_(0) # 没有这句话会报错 image_tensor = image_tensor.to(device) out = model(image_tensor) pred = torch.tensor([[1] if num[0] >= 0.5 else [0] for num in out]).to(device) print(class_names[pred])
预测结果
实际训练的过程来看,整体看准确度不高。而经过测试发现,该模型只能对于猫进行识别,对于狗则会误判。
五、参考资料
实现猫狗分类
到此这篇关于Python机器学习之基于Pytorch实现猫狗分类的文章就介绍到这了,更多相关Pytorch实现猫狗分类内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!
【本文转自:天门网站优化提供,感恩】