pandas DataFrame.shift()函数的具体使用
pandas DataFrame.shift()函数可以把数据移动指定的位数
period参数指定移动的步幅,可以为正为负.axis指定移动的轴,1为行,0为列.
eg: 有这样一个DataFrame数据:
import pandas as pd data1 = pd.DataFrame({ 'a': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 'b': [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] }) print data1 a b 0 0 9 1 1 8 2 2 7 3 3 6 4 4 5 5 5 4 6 6 3 7 7 2 8 8 1 9 9 0
如果想让 a和b的数据都往下移动一位:
data2 = data1.shift(axis=0) print data2 a b 0 NaN NaN 1 0.0 9.0 2 1.0 8.0 3 2.0 7.0 4 3.0 6.0 5 4.0 5.0 6 5.0 4.0 7 6.0 3.0 8 7.0 2.0 9 8.0 1.0
如果是在行上往右移动一位:
data3 = data1.shift(axis=1) print data3 a b 0 NaN 0.0 1 NaN 1.0 2 NaN 2.0 3 NaN 3.0 4 NaN 4.0 5 NaN 5.0 6 NaN 6.0 7 NaN 7.0 8 NaN 8.0 9 NaN 9.0
如果想往上或者往左移动,可以指定(periods=-1):
data4 = data1.shift(periods=-1, axis=0) print data4 a b 0 1.0 8.0 1 2.0 7.0 2 3.0 6.0 3 4.0 5.0 4 5.0 4.0 5 6.0 3.0 6 7.0 2.0 7 8.0 1.0 8 9.0 0.0 9 NaN NaN
一个例子:
这里有一组某车站各个小时的总进站人数和总出站人数的数据:
entries_and_exits = pd.DataFrame({ 'ENTRIESn': [3144312, 3144335, 3144353, 3144424, 3144594, 3144808, 3144895, 3144905, 3144941, 3145094], 'EXITSn': [1088151, 1088159, 1088177, 1088231, 1088275, 1088317, 1088328, 1088331, 1088420, 1088753] })
要求计算每个小时该车站进出站人数
思路: 把第n+1小时的总人数-第n小时的总人数,就是这个小时里的进出站人数
entries_and_exits_hourly = entries_and_exits - entries_and_exits.shift(axis=0)print(entries_and_exits_hourly.fillna(0)) #最后用0来填补NaN ENTRIESn EXITSn 0 0.0 0.0 1 23.0 8.0 2 18.0 18.0 3 71.0 54.0 4 170.0 44.0 5 214.0 42.0 6 87.0 11.0 7 10.0 3.0 8 36.0 89.0 9 153.0 333.0
到此这篇关于pandas DataFrame.shift()函数的具体使用的文章就介绍到这了,更多相关pandas DataFrame.shift()内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!
【文章出处:国内服务器 欢迎留下您的宝贵建议】