浅谈numpy 函数里面的axis参数的含义

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网

前言

numpy支持对矩阵和数组进行运算,因此很多numpy的很多运算都需要指定操作的维数参数axis(当然这些axis都有带默认值的),本博客以numpy.sum求和函数为例,具体分析axis参数不同取值下的含义。

先说结论

设 numpy.sum的输入矩阵为a. numpy.sum的返回矩阵为rst.

则矩阵a的形状为:sp=numpy.shape(a),例如sp=[m,n,p,q···]

rst的形状为将sp的第axis个元素设为1,即:

sp'=sp
sp'[axis]=1
numpy.shape(rst)==sp' 为真.

例如:axis=2,

如果a是矩阵则:

rst的形状应该为:[m,n,1,q···]

对于rst的元素rst[m',n',1,q'···]计算方法为:

【注意第axis轴】下标只能取1.

numpy.sum(a,axis=2)的内部计算其实为:

for i in range(sp[axis]):
    rst[m'][n'][1][q'][···]+=a[m'][n'][i][q'][···]

结果上发现是第axis维变成1,计算过程其实是对第axis轴进行了遍历,让sp[axis]个元素合并成一个元素。

而如果a是一个array则:

rst的形状应该为:[m,n,q,···]

注意第axis维直接不见了

numpy.sum(a,axis=2)的内部计算

for i in range(sp[axis]):
    rst[m'][n'][q'][···]+=a[m'][n'][i][q'][···]

结果上发现是第axis维变没了,计算过程其实是对第axis轴进行了遍历,让sp[axis]个元素合并成一个元素。

举例说明

简单点的

import numpy as np
a=np.mat([[1,2,3],[4,5,6]])

a的shape:

print (np.shape(a))

输出:(2, 3)

计算:np.sum(a,axis=0)

>>> s0=np.sum(a,axis=0)
>>> s0
matrix([[5, 7, 9]])

按照【先说结论】的方法:

axis=0

a的形状:(2,3)

所以rst的形状为:(1,3)

对于rst的每个元素p,q:

rst[p][q] 的 计算方法为(其中p只能等于0,q=0,1,2):

for i in range(np.shape(a)[axis]):
     rst[0][q]+=a[i][q]

所以:

rst[0][0]=a[0][0]+a[1][0]=1+4=5
rst[0][1]=a[0][1]+a[1][1]=2+5=7
rst[0][2]=a[0][2]+a[1][2]=3+6=9

所以rst就是[[5,7,9]]

计算 numpy.sum(a,axis=1)

a=[[1,2,3],[4,5,6]

>>> s1=np.sum(a,axis=1)
>>> s1
matrix([[ 6],
        [15]])
>>> np.shape(s1)
(2, 1)
>>> 

一样的分析方法:

按照【先说结论】的方法:

axis=1

a的形状:(2,3)

所以rst的形状为:(2,1)

对于rst的每个元素p,q:

rst[p][q] 的 计算方法为(其中p=0,1 ,而q只能为0):

for i in range(np.shape(a)[axis]):
     rst[p][0]+=a[p][i]

所以:

rst[0][0]=a[0][0]+a[0][1]+a[0][2]=1+2+3=6
rst[1][0]=a[1][1]+a[1][1]+a[1][2]=4+5+6=15

所以rst就是[[6],[15]].

复杂点的:

>>> b=np.array([[[1,2,3],[4,5,6],[7,8,9]]])
>>> b
array([[[1, 2, 3],
        [4, 5, 6],
        [7, 8, 9]]])
>>> np.shape(b)
(1, 3, 3)

b是1x3x3,是一个array.

那么np.sum(b,axis=2)等于多少呢?

标准答案:

>>> print (np.sum(b,axis=2))
[[ 6 15 24]]

分析结果:

返回值应该为1x3形状的array,对于元素rst[p][q].

rst[p][q]=a[p][q][0]+a[p][q][1]+a[p][q][2]

例如rst[0][1]=a[0][1][0]+a[0][1][1]+a[0][1][2]=8+5+6=15.

而np.sum(b,axis=2)的第一行第二个元素正是 15.

关于axis默认值

一般此类针对矩阵、array的函数都有一个axis参数,并且此默认为None.当axis为None使 表示运算是遍历矩阵(array)的每一个元素的,是逐元素的计算。

补充:python中某些函数axis参数的理解

总结为一句话:

设axis=i,则numpy沿着第i个下标变化的方向进行操作。

当然,这个i是从0开始数的,作为程序员的你一定不会搞错。

axis意为“轴”,它指定了函数在张量(矩阵、等等)上进行操作的方向。

例如有一个ndarray,名叫A,A.shape=(3,8,5,7)。

那么np.sum(A, axis=2)计算的结果的shape就是(3,8,7)。

假设这个shape是(3,8,7)的ndarray变量名为B,那么实际上:

B[i][j][k]=A[i][j][0][k]+A[i][j][1][k]+A[i][j][2][k]+A[i][j][3][k]+A[i][j][4][k]

以下代码你可以自己跑一下试试:

import numpy as np
A=np.random.randn(3,8,5,7)
print("A.shape=",A.shape)
B=np.sum(A,axis=2)
print("B.shape=",B.shape)

预期输出为:

A.shape= (3, 8, 5, 7)

B.shape= (3, 8, 7)

以上为个人经验,希望能给大家一个参考,也希望大家多多支持hwidc。