像线程一样管理进程的Python multiprocessing库

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网
目录
  • 一、创建一个进程
  • 二、设置进程名
  • 三、守护进程
  • 四、join()
  • 五、强制结束进程
  • 六、进程退出状态码
  • 七、日志
  • 八、派生进程

一、创建一个进程

要创建一个进程,最简单的方式是用一个目标函数实例化一个Process对象,然后与threading一样调用start()函数让它工作。示例如下:

import multiprocessing

def worker():
    for i in range(3):
        print(i)

if __name__=="__main__":
    p = multiprocessing.Process(target=worker)
    p.start()

运行之后,效果如下:

效果

需要注意的是,multiprocessing库在Windows创建进程必须在if __name__=="__main__":中,这是 Windows 上多进程的实现问题。在 Windows 上,子进程会自动 import 启动它的这个文件,而在 import 的时候是会执行这些语句的。如果直接创建就会无限递归创建子进程报错。所以必须把创建子进程的部分用那个 if 判断保护起来,import 的时候 __name__ 不是 __main__ ,就不会递归运行了。

二、设置进程名

在threading线程中,我们可以通过其参数name设置线程名,同样的我们也可以通过name参数设置其进程的名字。示例如下:

import multiprocessing
import time

def worker():
    print(multiprocessing.current_process().name, "start")
    time.sleep(2)
    print(multiprocessing.current_process().name, "end")

if __name__ == "__main__":
    p1 = multiprocessing.Process(name='p1', target=worker)
    p2 = multiprocessing.Process(name='p2', target=worker)
    p3 = multiprocessing.Process(name='p3', target=worker)
    p1.start()
    p2.start()
    p3.start()

运行之后,效果如下:

name

三、守护进程

和线程一样,在所有子进程没有退出之前,主程序是不会退出的。有时候,我们可能需要启动一个后台进程,它可以一直运行而不阻塞主程序退出。

要标志一个守护进程,可以将其添加第3个参数daemon,设置为True。默认值为False,不作为守护进程。示例如下:

import multiprocessing
import time

def worker():
    print(multiprocessing.current_process().name, "start")
    time.sleep(1)
    print(multiprocessing.current_process().name, "end")

def worker2():
    print(multiprocessing.current_process().name, "start")
    time.sleep(2)
    print(multiprocessing.current_process().name, "end")

if __name__ == "__main__":
    p1 = multiprocessing.Process(name='p1', target=worker)
    p2 = multiprocessing.Process(name='p2', target=worker2, daemon=True)
    p3 = multiprocessing.Process(name='p3', target=worker2, daemon=True)
    p1.start()
    p2.start()
    p3.start()

运行之后,效果如下:

守护进程

p2,p3为守护进程,但p1不是所以执行1秒之后,就退出主程序了,也就没有打印p2p3的内容。但是其依旧在执行中,直到执行完成。

四、join()

同样的,如果你期望强制等待一个守护进程的结束,可以增加join()函数。还是上面的代码,示例如下:

import multiprocessing
import time

def worker():
    print(multiprocessing.current_process().name, "start")
    time.sleep(1)
    print(multiprocessing.current_process().name, "end")

def worker2():
    print(multiprocessing.current_process().name, "start")
    time.sleep(2)
    print(multiprocessing.current_process().name, "end")

if __name__ == "__main__":
    p1 = multiprocessing.Process(name='p1', target=worker)
    p2 = multiprocessing.Process(name='p2', target=worker2, daemon=True)
    p3 = multiprocessing.Process(name='p3', target=worker2, daemon=True)
    p1.start()
    p2.start()
    p3.start()
    p1.join()
    p2.join()
    p3.join()

   

运行之后,和设置进程名的运行结果一样,这里不在展示。唯一与守护进程代码的区别就是最后三行join()函数代码。当然,也可以像线程一样,给join()函数传入一个时间,超过这个时间,主进程不再等待。

五、强制结束进程

如果一个进程已经挂起或者不小心进入了死锁状态,那么这个时候,我们往往会强制的结束进程。对一个进程对象调用terminate()会结束子进程。示例如下:

import multiprocessing
import time

def worker():
    print(multiprocessing.current_process().name, "start")
    time.sleep(5)
    print(multiprocessing.current_process().name, "end")

if __name__ == "__main__":
    p1 = multiprocessing.Process(name='p1', target=worker)
    p1.start()
    print("是否还在运行", p1.is_alive())
    p1.terminate()
    print("是否还在运行", p1.is_alive())
    p1.join()
    print("是否还在运行", p1.is_alive())

运行之后,输出如下:

强制结束进程

终止进程后要使用join()函数等待进程的退出。使进程管理代码有足够的时间更新对象的状态,以反应进程已经终止。

六、进程退出状态码

进程退出时,生成的状态码可以通过exitcode属性访问。下表就是其状态码的取值范围以及其意义:

退出码 含义 0 未生成任何错误 >0 进程有一个错误,并以该错误码退出 <0 进程以一个-1*exitcodde信号结束

测试如下:

import multiprocessing
import time

def worker():
    print(multiprocessing.current_process().name, "start")
    time.sleep(5)
    print(multiprocessing.current_process().name, "end")

if __name__ == "__main__":
    p1 = multiprocessing.Process(name='p1', target=worker)
    p2 = multiprocessing.Process(name='p2', target=worker)
    p1.start()
    p2.start()
    print("是否还在运行", p1.is_alive())
    p1.terminate()
    print("是否还在运行", p1.is_alive())
    print(p1.exitcode)
    p1.join()
    print("是否还在运行", p1.is_alive())
    print(p1.exitcode)
    time.sleep(5.5)
    print(p2.exitcode)

运行之后,效果如下:

错误码

可以看到,强制退出的进程状态码为负数,正常退出的进程状态码为0。

七、日志

调试并发问题时,如果能够访问multiprocessing所提供对象的内部状态,那么这会很有用。在实际的项目中,我们可以使用一个方便的模块级函数启用日志记录,它使用logging建立一个日志记录器对象,并增加一个处理器,使日志消息被发送到标准错误通道。

示例如下:

import multiprocessing
import logging
import sys

def worker():
    print("运行工作进程")
    sys.stdout.flush()

if __name__ == "__main__":
    multiprocessing.log_to_stderr(logging.DEBUG)
    p1 = multiprocessing.Process(name='p1', target=worker)
    p1.start()
    p1.join()

运行之后,效果如下:

logging

八、派生进程

与线程一样,我们可以自定义进程,而不必只是传入一个函数进行进程的创建。

创建的进程的方式也是派生自进程类即可。示例如下:

import multiprocessing

class WorkerProcess(multiprocessing.Process):
    def run(self):
        print(self.name)
        return

if __name__ == "__main__":
    for i in range(5):
        p = WorkerProcess()
        p.start()
        p.join()

运行之后,效果如下:

自定义进程

multiprocessing库的进程知识与threading一样长,因为本篇的内容已经够长了,剩下的知识我们将在下一篇博文中接着讲解。

到此这篇关于像线程一样管理进程的Python multiprocessing库的文章就介绍到这了,更多相关Python multiprocessing库内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

【本文转自:http://www.1234xp.com/hggf.html 欢迎留下您的宝贵建议】