Python深度学习之使用Pytorch搭建ShuffleNetv2

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网
目录
  • 一、model.py
    • 1.1 Channel Shuffle
    • 1.2 block
    • 1.3 shufflenet v2
  • 二、train.py

    一、model.py

    1.1 Channel Shuffle

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    def channel_shuffle(x: Tensor, groups: int) -> Tensor:
    
        batch_size, num_channels, height, width = x.size()
        channels_per_group = num_channels // groups
    
        # reshape
        # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width]
        x = x.view(batch_size, groups, channels_per_group, height, width)
    
        x = torch.transpose(x, 1, 2).contiguous()
    
        # flatten
        x = x.view(batch_size, -1, height, width)
    
        return x
    

    1.2 block

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    class InvertedResidual(nn.Module):
        def __init__(self, input_c: int, output_c: int, stride: int):
            super(InvertedResidual, self).__init__()
    
            if stride not in [1, 2]:
                raise ValueError("illegal stride value.")
            self.stride = stride
    
            assert output_c % 2 == 0
            branch_features = output_c // 2
            # 当stride为1时,input_channel应该是branch_features的两倍
            # python中 '<<' 是位运算,可理解为计算×2的快速方法
            assert (self.stride != 1) or (input_c == branch_features << 1)
    
            if self.stride == 2:
                self.branch1 = nn.Sequential(
                    self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1),
                    nn.BatchNorm2d(input_c),
                    nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                    nn.BatchNorm2d(branch_features),
                    nn.ReLU(inplace=True)
                )
            else:
                self.branch1 = nn.Sequential()
    
            self.branch2 = nn.Sequential(
                nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1,
                          stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True),
                self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1),
                nn.BatchNorm2d(branch_features),
                nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(branch_features),
                nn.ReLU(inplace=True)
            )
    
        @staticmethod
        def depthwise_conv(input_c: int,
                           output_c: int,
                           kernel_s: int,
                           stride: int = 1,
                           padding: int = 0,
                           bias: bool = False) -> nn.Conv2d:
            return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s,
                             stride=stride, padding=padding, bias=bias, groups=input_c)
    
        def forward(self, x: Tensor) -> Tensor:
            if self.stride == 1:
                x1, x2 = x.chunk(2, dim=1)
                out = torch.cat((x1, self.branch2(x2)), dim=1)
            else:
                out = torch.cat((self.branch1(x), self.branch2(x)), dim=1)
    
            out = channel_shuffle(out, 2)
    
            return out
    

    1.3 shufflenet v2

    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

    class ShuffleNetV2(nn.Module):
        def __init__(self,
                     stages_repeats: List[int],
                     stages_out_channels: List[int],
                     num_classes: int = 1000,
                     inverted_residual: Callable[..., nn.Module] = InvertedResidual):
            super(ShuffleNetV2, self).__init__()
    
            if len(stages_repeats) != 3:
                raise ValueError("expected stages_repeats as list of 3 positive ints")
            if len(stages_out_channels) != 5:
                raise ValueError("expected stages_out_channels as list of 5 positive ints")
            self._stage_out_channels = stages_out_channels
    
            # input RGB image
            input_channels = 3
            output_channels = self._stage_out_channels[0]
    
            self.conv1 = nn.Sequential(
                nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False),
                nn.BatchNorm2d(output_channels),
                nn.ReLU(inplace=True)
            )
            input_channels = output_channels
    
            self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    
            # Static annotations for mypy
            self.stage2: nn.Sequential
            self.stage3: nn.Sequential
            self.stage4: nn.Sequential
    
            stage_names = ["stage{}".format(i) for i in [2, 3, 4]]
            for name, repeats, output_channels in zip(stage_names, stages_repeats,
                                                      self._stage_out_channels[1:]):
                seq = [inverted_residual(input_channels, output_channels, 2)]
                for i in range(repeats - 1):
                    seq.append(inverted_residual(output_channels, output_channels, 1))
                setattr(self, name, nn.Sequential(*seq))
                input_channels = output_channels
    
            output_channels = self._stage_out_channels[-1]
            self.conv5 = nn.Sequential(
                nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(output_channels),
                nn.ReLU(inplace=True)
            )
    
            self.fc = nn.Linear(output_channels, num_classes)
    
        def _forward_impl(self, x: Tensor) -> Tensor:
            # See note [TorchScript super()]
            x = self.conv1(x)
            x = self.maxpool(x)
            x = self.stage2(x)
            x = self.stage3(x)
            x = self.stage4(x)
            x = self.conv5(x)
            x = x.mean([2, 3])  # global pool
            x = self.fc(x)
            return x
    
        def forward(self, x: Tensor) -> Tensor:
            return self._forward_impl(x)
    

    二、train.py

    在这里插入图片描述

    到此这篇关于Python深度学习之使用Pytorch搭建ShuffleNetv2的文章就介绍到这了,更多相关Python用Pytorch搭建ShuffleNetv2内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

    【转自:http://www.yidunidc.com/mggfzq.html 网络转载请说明出处】