python numpy中setdiff1d的用法说明

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网

一、函数解释

setdiff1d(ar1, ar2, assume_unique=False)

1.功能:找到2个数组中集合元素的差异。

2.返回值:在ar1中但不在ar2中的已排序的唯一值。

3.参数:

ar1:array_like 输入数组。

ar2:array_like 输入比较数组。

assume_unique:bool。如果为True,则假定输入数组是唯一的,即可以加快计算速度。 默认值为False。

二、具体示例

1.assume_unique = False的情况:

    a = np.array([1,2,3])
    b = np.array([4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2 3]
    a = np.array([1,2,3])
    b = np.array([1,2,3])
    c = np.setdiff1d(a, b)
    print(c)#[]
    a = np.array([1,2,3])
    b = np.array([2,3,4])
    c = np.setdiff1d(a, b)
    print(c)#[1]
    a = np.array([1,2,3,4])
    b = np.array([3,4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2]
    a = np.array([1,2,3,2,4,1])
    b = np.array([3,4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2]
    a = np.array([8,2,3,2,4,1])
    b = np.array([7,4,5,6,3])
    c = np.setdiff1d(a, b)
    print(c)#[1 2 8]

可以从最后看出返回的值从小到大排序,并且唯一。(8在a的第1位,2在a中重复了2次)

2.assume_unique = True的情况:

    a = np.array([3,2,1])
    b = np.array([4,5,6])
    c = np.setdiff1d(a, b,True)
    print(c)#[3 2 1]
    a = np.array([8,2,3,2,4,1])
    b = np.array([7,4,5,6,3])
    c = np.setdiff1d(a, b,True)
    print(c)#[8 2 2 1]
    a = np.array([8,2,3,4,2,4,1])
    b = np.array([7,9,5,6,3])
    c = np.setdiff1d(a, b,True)
    print(c)#[8 2 4 2 4 1]

可以看出把在a中的但是不在b中的元素按a中的顺序排序,并且不合并重复的元素,即假定输入数组也是唯一的,因此相比于False确实提升了运算速度。

三、整体代码

import numpy as np 
def main():
    a = np.array([1,2,3])
    b = np.array([4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2 3]
    a = np.array([1,2,3])
    b = np.array([1,2,3])
    c = np.setdiff1d(a, b)
    print(c)#[]
    a = np.array([1,2,3])
    b = np.array([2,3,4])
    c = np.setdiff1d(a, b)
    print(c)#[1]
    a = np.array([1,2,3,4])
    b = np.array([3,4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2]
    a = np.array([1,2,3,2,4,1])
    b = np.array([3,4,5,6])
    c = np.setdiff1d(a, b)
    print(c)#[1 2]
    a = np.array([8,2,3,2,4,1])
    b = np.array([7,4,5,6,3])
    c = np.setdiff1d(a, b)
    print(c)#[1 2 8]
    a = np.array([3,2,1])
    b = np.array([4,5,6])
    c = np.setdiff1d(a, b,True)
    print(c)#[3 2 1]
    a = np.array([8,2,3,2,4,1])
    b = np.array([7,4,5,6,3])
    c = np.setdiff1d(a, b,True)
    print(c)#[8 2 2 1]
    a = np.array([8,2,3,4,2,4,1])
    b = np.array([7,9,5,6,3])
    c = np.setdiff1d(a, b,True)
    print(c)#[8 2 4 2 4 1]
 
if __name__ == '__main__':
    main()
 

补充:Python编程之numpy库函数in1d的使用

最近利用Python作数值分析时使用到numpy库下的in1d函数。in1d函数与excel中vlookup函数和MATLAB中ismember函数有相似之处。其作用在于在序列B中寻找与序列A相同的值,并返回一逻辑值(True,False)或逻辑值构成的向量。

具体例子见下文

设mask为逻辑值向量,矩阵x的第一列为待查找向量,d为被查询向量(或值),即查找x中与d中指定元素相同的值,并返回逻辑值向量mask。mask是由一系列True和False值构成,True代表找到相同的值,而False代表没找到相同的值。演示如下:

mask= np.in1d(x.values[:,1],d[1],invert=False) ##x为DataFrame型数据,x.values[:,1]表示取第二列值
x_temp=x[mask]

示取第二列值

x_temp=x[mask]  

该例旨在查找 x 的第二列值中与d向量中第二个元素相同的部分 ,并返回mask逻辑向量;然后x_temp返回x中mask逻辑值为True的行。

mask向量的类型为bool,查看具体值下图所示:

值得注意的地方在于in1d函数中invert参数的设置。当invert=True时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]不同的部分(i为当前查找位置),相同的部分则为false;当invert=False时,mask中的元素值为True的部分对x.values[:,1]中与当前查找的元素d[i]相同的部分(i为当前查找位置)。

演示见下图:

当mask= np.in1d(x.values[:,1],d[2],invert=True)

当mask= np.in1d(x.values[:,1],d[2],invert=False)时

以上为个人经验,希望能给大家一个参考,也希望大家多多支持hwidc。如有错误或未考虑完全的地方,望不吝赐教。