python通过Seq2Seq实现闲聊机器人

编辑: admin 分类: python 发布时间: 2021-12-24 来源:互联网
目录
  • 一、准备训练数据
  • 二、数据的处理和保存
    • 2.1 小黄鸡的语料的处理
    • 2.2 微博语料的处理
    • 2.3 处理后的结果
  • 三、构造文本序列化和反序列化方法
    • 四、构建Dataset和DataLoader
      • 五、完成encoder编码器逻辑
        • 六、完成decoder解码器的逻辑
          • 七、完成seq2seq的模型
            • 八、完成训练逻辑
              • 九、评估逻辑

                一、准备训练数据

                主要的数据有两个:

                1.小黄鸡的聊天语料:噪声很大

                2.微博的标题和评论:质量相对较高

                二、数据的处理和保存

                由于数据中存到大量的噪声,可以对其进行基础的处理,然后分别把input和target使用两个文件保存,即input中的第N行尾问,target的第N行为答

                后续可能会把单个字作为特征(存放在input_word.txt),也可能会把词语作为特征(input.txt)

                2.1 小黄鸡的语料的处理

                def format_xiaohuangji_corpus(word=False):
                    """处理小黄鸡的语料"""
                    if word:
                        corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"
                        input_path = "./chatbot/corpus/input_word.txt"
                        output_path = "./chatbot/corpus/output_word.txt"
                    else:
                 
                        corpus_path = "./chatbot/corpus/xiaohuangji50w_nofenci.conv"
                        input_path = "./chatbot/corpus/input.txt"
                        output_path = "./chatbot/corpus/output.txt"
                 
                    f_input = open(input_path, "a")
                    f_output = open(output_path, "a")
                    pair = []
                    for line in tqdm(open(corpus_path), ascii=True):
                        if line.strip() == "E":
                            if not pair:
                                continue
                            else:
                                assert len(pair) == 2, "长度必须是2"
                                if len(pair[0].strip()) >= 1 and len(pair[1].strip()) >= 1:
                                    f_input.write(pair[0] + "\n")
                                    f_output.write(pair[1] + "\n")
                                pair = []
                        elif line.startswith("M"):
                            line = line[1:]
                            if word:
                                pair.append(" ".join(list(line.strip())))
                            else:
                                pair.append(" ".join(jieba_cut(line.strip())))
                

                2.2 微博语料的处理

                def format_weibo(word=False):
                    """
                    微博数据存在一些噪声,未处理
                    :return:
                    """
                    if word:
                        origin_input = "./chatbot/corpus/stc_weibo_train_post"
                        input_path = "./chatbot/corpus/input_word.txt"
                 
                        origin_output = "./chatbot/corpus/stc_weibo_train_response"
                        output_path = "./chatbot/corpus/output_word.txt"
                 
                    else:
                        origin_input = "./chatbot/corpus/stc_weibo_train_post"
                        input_path = "./chatbot/corpus/input.txt"
                 
                        origin_output = "./chatbot/corpus/stc_weibo_train_response"
                        output_path = "./chatbot/corpus/output.txt"
                 
                    f_input = open(input_path, "a")
                    f_output = open(output_path, "a")
                    with open(origin_input) as in_o, open(origin_output) as out_o:
                        for _in, _out in tqdm(zip(in_o, out_o), ascii=True):
                            _in = _in.strip()
                            _out = _out.strip()
                 
                            if _in.endswith(")") or _in.endswith("」") or _in.endswith(")"):
                                _in = re.sub("(.*)|「.*?」|\(.*?\)", " ", _in)
                            _in = re.sub("我在.*?alink|alink|(.*?\d+x\d+.*?)|#|】|【|-+|_+|via.*?:*.*", " ", _in)
                 
                            _in = re.sub("\s+", " ", _in)
                            if len(_in) < 1 or len(_out) < 1:
                                continue
                 
                            if word:
                                _in = re.sub("\s+", "", _in)  # 转化为一整行,不含空格
                                _out = re.sub("\s+", "", _out)
                                if len(_in) >= 1 and len(_out) >= 1:
                                    f_input.write(" ".join(list(_in)) + "\n")
                                    f_output.write(" ".join(list(_out)) + "\n")
                            else:
                                if len(_in) >= 1 and len(_out) >= 1:
                                    f_input.write(_in.strip() + "\n")
                                    f_output.write(_out.strip() + "\n")
                 
                    f_input.close()
                    f_output.close()
                

                2.3 处理后的结果

                三、构造文本序列化和反序列化方法

                和之前的操作相同,需要把文本能转化为数字,同时还需实现方法把数字转化为文本

                示例代码:

                import config
                import pickle
                 
                 
                class Word2Sequence():
                    UNK_TAG = "UNK"
                    PAD_TAG = "PAD"
                    SOS_TAG = "SOS"
                    EOS_TAG = "EOS"
                 
                    UNK = 0
                    PAD = 1
                    SOS = 2
                    EOS = 3
                 
                    def __init__(self):
                        self.dict = {
                            self.UNK_TAG: self.UNK,
                            self.PAD_TAG: self.PAD,
                            self.SOS_TAG: self.SOS,
                            self.EOS_TAG: self.EOS
                        }
                        self.count = {}
                        self.fited = False
                 
                    def to_index(self, word):
                        """word -> index"""
                        assert self.fited == True, "必须先进行fit操作"
                        return self.dict.get(word, self.UNK)
                 
                    def to_word(self, index):
                        """index -> word"""
                        assert self.fited, "必须先进行fit操作"
                        if index in self.inversed_dict:
                            return self.inversed_dict[index]
                        return self.UNK_TAG
                 
                    def __len__(self):
                        return len(self.dict)
                 
                    def fit(self, sentence):
                        """
                        :param sentence:[word1,word2,word3]
                        :param min_count: 最小出现的次数
                        :param max_count: 最大出现的次数
                        :param max_feature: 总词语的最大数量
                        :return:
                        """
                        for a in sentence:
                            if a not in self.count:
                                self.count[a] = 0
                            self.count[a] += 1
                 
                        self.fited = True
                 
                    def build_vocab(self, min_count=1, max_count=None, max_feature=None):
                 
                        # 比最小的数量大和比最大的数量小的需要
                        if min_count is not None:
                            self.count = {k: v for k, v in self.count.items() if v >= min_count}
                        if max_count is not None:
                            self.count = {k: v for k, v in self.count.items() if v <= max_count}
                 
                        # 限制最大的数量
                        if isinstance(max_feature, int):
                            count = sorted(list(self.count.items()), key=lambda x: x[1])
                            if max_feature is not None and len(count) > max_feature:
                                count = count[-int(max_feature):]
                            for w, _ in count:
                                self.dict[w] = len(self.dict)
                        else:
                            for w in sorted(self.count.keys()):
                                self.dict[w] = len(self.dict)
                 
                        # 准备一个index->word的字典
                        self.inversed_dict = dict(zip(self.dict.values(), self.dict.keys()))
                 
                    def transform(self, sentence, max_len=None, add_eos=False):
                        """
                        实现吧句子转化为数组(向量)
                        :param sentence:
                        :param max_len:
                        :return:
                        """
                        assert self.fited, "必须先进行fit操作"
                 
                        r = [self.to_index(i) for i in sentence]
                        if max_len is not None:
                            if max_len > len(sentence):
                                if add_eos:
                                    r += [self.EOS] + [self.PAD for _ in range(max_len - len(sentence) - 1)]
                                else:
                                    r += [self.PAD for _ in range(max_len - len(sentence))]
                            else:
                                if add_eos:
                                    r = r[:max_len - 1]
                                    r += [self.EOS]
                                else:
                                    r = r[:max_len]
                        else:
                            if add_eos:
                                r += [self.EOS]
                        # print(len(r),r)
                        return r
                 
                    def inverse_transform(self, indices):
                        """
                        实现从数组 转化为 向量
                        :param indices: [1,2,3....]
                        :return:[word1,word2.....]
                        """
                        sentence = []
                        for i in indices:
                            word = self.to_word(i)
                            sentence.append(word)
                        return sentence
                 
                 
                # 之后导入该word_sequence使用
                word_sequence = pickle.load(open("./pkl/ws.pkl", "rb")) if not config.use_word else pickle.load(
                    open("./pkl/ws_word.pkl", "rb"))
                 
                if __name__ == '__main__':
                    from word_sequence import Word2Sequence
                    from tqdm import tqdm
                    import pickle
                 
                    word_sequence = Word2Sequence()
                    # 词语级别
                    input_path = "../corpus/input.txt"
                    target_path = "../corpus/output.txt"
                    for line in tqdm(open(input_path).readlines()):
                        word_sequence.fit(line.strip().split())
                    for line in tqdm(open(target_path).readlines()):
                        word_sequence.fit(line.strip().split())
                 
                    # 使用max_feature=5000个数据
                    word_sequence.build_vocab(min_count=5, max_count=None, max_feature=5000)
                    print(len(word_sequence))
                    pickle.dump(word_sequence, open("./pkl/ws.pkl", "wb"))
                

                word_sequence.py:

                class WordSequence(object):
                    PAD_TAG = 'PAD'  # 填充标记
                    UNK_TAG = 'UNK'  # 未知词标记
                    SOS_TAG = 'SOS'  # start of sequence
                    EOS_TAG = 'EOS'  # end of sequence
                 
                    PAD = 0
                    UNK = 1
                    SOS = 2
                    EOS = 3
                 
                    def __init__(self):
                        self.dict = {
                            self.PAD_TAG: self.PAD,
                            self.UNK_TAG: self.UNK,
                            self.SOS_TAG: self.SOS,
                            self.EOS_TAG: self.EOS
                        }
                        self.count = {}  # 保存词频词典
                        self.fited = False
                 
                    def to_index(self, word):
                        """
                        word --> index
                        :param word:
                        :return:
                        """
                        assert self.fited == True, "必须先进行fit操作"
                        return self.dict.get(word, self.UNK)
                 
                    def to_word(self, index):
                        """
                        index -- > word
                        :param index:
                        :return:
                        """
                        assert self.fited, '必须先进行fit操作'
                        if index in self.inverse_dict:
                            return self.inverse_dict[index]
                        return self.UNK_TAG
                 
                    def fit(self, sentence):
                        """
                        传入句子,统计词频
                        :param sentence:
                        :return:
                        """
                        for word in sentence:
                            # 对word出现的频率进行统计,当word不在sentence时,返回值是0,当word在sentence中时,返回+1,以此进行累计计数
                            # self.count[word] = self.dict.get(word, 0) + 1
                            if word not in self.count:
                                self.count[word] = 0
                            self.count[word] += 1
                        self.fited = True
                 
                    def build_vocab(self, min_count=2, max_count=None, max_features=None):
                        """
                        构造词典
                        :param min_count:最小词频
                        :param max_count: 最大词频
                        :param max_features: 词典中词的数量
                        :return:
                        """
                        # self.count.pop(key),和del self.count[key] 无法在遍历self.count的同时进行删除key.因此浅拷贝temp后对temp遍历并删除self.count
                        temp = self.count.copy()
                        for key in temp:
                            cur_count = self.count.get(key, 0)  # 当前词频
                            if min_count is not None:
                                if cur_count < min_count:
                                    del self.count[key]
                            if max_count is not None:
                                if cur_count > max_count:
                                    del self.count[key]
                            if max_features is not None:
                                self.count = dict(sorted(list(self.count.items()), key=lambda x: x[1], reversed=True)[:max_features])
                        for key in self.count:
                            self.dict[key] = len(self.dict)
                        #  准备一个index-->word的字典
                        self.inverse_dict = dict(zip(self.dict.values(), self.dict.keys()))
                 
                    def transforms(self, sentence, max_len=10, add_eos=False):
                        """
                        把sentence转化为序列
                        :param sentence: 传入的句子
                        :param max_len: 句子的最大长度
                        :param add_eos: 是否添加结束符
                        add_eos : True时,输出句子长度为max_len + 1
                        add_eos : False时,输出句子长度为max_len
                        :return:
                        """
                        assert self.fited, '必须先进行fit操作!'
                        if len(sentence) > max_len:
                            sentence = sentence[:max_len]
                        #  提前计算句子长度,实现ass_eos后,句子长度统一
                        sentence_len = len(sentence)
                        #  sentence[1,3,4,5,UNK,EOS,PAD,....]
                        if add_eos:
                            sentence += [self.EOS_TAG]
                        if sentence_len < max_len:
                            #  句子长度不够,用PAD来填充
                            sentence += (max_len - sentence_len) * [self.PAD_TAG]
                        #  对于新出现的词采用特殊标记
                        result = [self.dict.get(i, self.UNK) for i in sentence]
                 
                        return result
                 
                    def invert_transform(self, indices):
                        """
                        序列转化为sentence
                        :param indices:
                        :return:
                        """
                        # return [self.inverse_dict.get(i, self.UNK_TAG) for i in indices]
                        result = []
                        for i in indices:
                            if self.inverse_dict[i] == self.EOS_TAG:
                                break
                            result.append(self.inverse_dict.get(i, self.UNK_TAG))
                        return result
                 
                    def __len__(self):
                        return len(self.dict)
                 
                 
                if __name__ == '__main__':
                    num_sequence = WordSequence()
                    print(num_sequence.dict)
                    str1 = ['中国', '您好', '我爱你', '中国', '我爱你', '北京']
                    num_sequence.fit(str1)
                    num_sequence.build_vocab()
                    print(num_sequence.transforms(str1))
                    print(num_sequence.dict)
                    print(num_sequence.inverse_dict)
                    print(num_sequence.invert_transform([5, 4]))  # 这儿要传列表
                

                运行结果:

                四、构建Dataset和DataLoader

                创建dataset.py 文件,准备数据集

                import config
                import torch
                from torch.utils.data import Dataset, DataLoader
                from word_sequence import WordSequence
                 
                 
                class ChatDataset(Dataset):
                    def __init__(self):
                        self.input_path = config.chatbot_input_path
                        self.target_path = config.chatbot_target_path
                        self.input_lines = open(self.input_path, encoding='utf-8').readlines()
                        self.target_lines = open(self.target_path, encoding='utf-8').readlines()
                        assert len(self.input_lines) == len(self.target_lines), 'input和target长度不一致'
                 
                    def __getitem__(self, item):
                        input = self.input_lines[item].strip().split()
                        target = self.target_lines[item].strip().split()
                        if len(input) == 0 or len(target) == 0:
                            input = self.input_lines[item + 1].strip().split()
                            target = self.target_lines[item + 1].strip().split()
                        # 此处句子的长度如果大于max_len,那么应该返回max_len
                        input_length = min(len(input), config.max_len)
                        target_length = min(len(target), config.max_len)
                        return input, target, input_length, target_length
                 
                    def __len__(self):
                        return len(self.input_lines)
                 
                 
                def collate_fn(batch):
                    #  1.排序
                    batch = sorted(batch, key=lambda x: x[2], reversed=True)
                    input, target, input_length, target_length = zip(*batch)
                 
                    #  2.进行padding的操作
                    input = torch.LongTensor([WordSequence.transform(i, max_len=config.max_len) for i in input])
                    target = torch.LongTensor([WordSequence.transforms(i, max_len=config.max_len, add_eos=True) for i in target])
                    input_length = torch.LongTensor(input_length)
                    target_length = torch.LongTensor(target_length)
                 
                    return input, target, input_length, target_length
                 
                 
                data_loader = DataLoader(dataset=ChatDataset(), batch_size=config.batch_size, shuffle=True, collate_fn=collate_fn,
                                         drop_last=True)
                 
                 
                if __name__ == '__main__':
                    print(len(data_loader))
                    for idx, (input, target, input_length, target_length) in enumerate(data_loader):
                        print(idx)
                        print(input)
                        print(target)
                        print(input_length)
                        print(target_length)
                

                五、完成encoder编码器逻辑

                encode.py:

                import torch.nn as nn
                import config
                from torch.nn.utils.rnn import pad_packed_sequence, pack_padded_sequence
                 
                 
                class Encoder(nn.Module):
                    def __init__(self):
                        super(Encoder, self).__init__()
                        #  torch.nn.Embedding(num_embeddings词典大小即不重复词数,embedding_dim单个词用多长向量表示)
                        self.embedding = nn.Embedding(
                            num_embeddings=len(config.word_sequence.dict),
                            embedding_dim=config.embedding_dim,
                            padding_idx=config.word_sequence.PAD
                        )
                        self.gru = nn.GRU(
                            input_size=config.embedding_dim,
                            num_layers=config.num_layer,
                            hidden_size=config.hidden_size,
                            bidirectional=False,
                            batch_first=True
                        )
                 
                    def forward(self, input, input_length):
                        """
                        :param input: [batch_size, max_len]
                        :return:
                        """
                        embedded = self.embedding(input)  # embedded [batch_size, max_len, embedding_dim]
                        # 加速循环过程
                        embedded = pack_padded_sequence(embedded, input_length, batch_first=True)  # 打包
                        out, hidden = self.gru(embedded)
                        out, out_length = pad_packed_sequence(out, batch_first=True, padding_value=config.num_sequence.PAD)  # 解包
                 
                        # hidden即h_n [num_layer*[1/2],batchsize, hidden_size]
                        # out : [batch_size, seq_len/max_len, hidden_size]
                        return out, hidden, out_length
                 
                 
                if __name__ == '__main__':
                    from dataset import data_loader
                 
                    encoder = Encoder()
                    print(encoder)
                    for input, target, input_length, target_length in data_loader:
                        out, hidden, out_length = encoder(input, input_length)
                        print(input.size())
                        print(out.size())
                        print(hidden.size())
                        print(out_length)
                        break
                

                六、完成decoder解码器的逻辑

                decode.py:

                import torch
                import torch.nn as nn
                import config
                import torch.nn.functional as F
                from word_sequence import WordSequence
                 
                 
                class Decode(nn.Module):
                    def __init__(self):
                        super().__init__()
                        self.max_seq_len = config.max_len
                        self.vocab_size = len(WordSequence)
                        self.embedding_dim = config.embedding_dim
                        self.dropout = config.dropout
                 
                        self.embedding = nn.Embedding(num_embeddings=self.vocab_size, embedding_dim=self.embedding_dim,
                                                      padding_idx=WordSequence.PAD)
                        self.gru = nn.GRU(input_size=self.embedding_dim, hidden_size=config.hidden_size, num_layers=1, batch_first=True,
                                          dropout=self.dropout)
                        self.log_softmax = nn.LogSoftmax()
                        self.fc = nn.Linear(config.hidden_size, self.vocab_size)
                 
                    def forward(self, encoder_hidden, target, target_length):
                        # encoder_hidden [batch_size,hidden_size]
                        # target [batch_size,seq-len]
                        decoder_input = torch.LongTensor([[WordSequence.SOS]] * config.batch_size).to(config.device)
                        decoder_outputs = torch.zeros(config.batch_size, config.max_len, self.vocab_size).to(
                            config.device)  # [batch_size,seq_len,14]
                 
                        decoder_hidden = encoder_hidden  # [batch_size,hidden_size]
                 
                        for t in range(config.max_len):
                            decoder_output_t, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
                            decoder_outputs[:, t, :] = decoder_output_t
                            value, index = torch.topk(decoder_output_t, 1)  # index [batch_size,1]
                            decoder_input = index
                        return decoder_outputs, decoder_hidden
                 
                    def forward_step(self, decoder_input, decoder_hidden):
                        """
                        :param decoder_input:[batch_size,1]
                        :param decoder_hidden:[1,batch_size,hidden_size]
                        :return:[batch_size,vocab_size],decoder_hidden:[1,batch_size,didden_size]
                        """
                        embeded = self.embedding(decoder_input)  # embeded: [batch_size,1 , embedding_dim]
                        out, decoder_hidden = self.gru(embeded, decoder_hidden)  # out [1, batch_size, hidden_size]
                        out = out.squeeze(0)
                        out = F.log_softmax(self.fc(out), dim=1)  # [batch_Size, vocab_size]
                        out = out.squeeze(0)
                        # print("out size:",out.size(),decoder_hidden.size())
                        return out, decoder_hidden
                

                关于 decoder_outputs[:,t,:] = decoder_output_t的演示

                decoder_outputs 形状 [batch_size, seq_len, vocab_size]
                decoder_output_t 形状[batch_size, vocab_size]

                示例代码:

                import torch
                 
                a = torch.zeros((2, 3, 5))
                print(a.size())
                print(a)
                 
                b = torch.randn((2, 5))
                print(b.size())
                print(b)
                 
                a[:, 0, :] = b
                print(a.size())
                print(a)
                

                运行结果:

                关于torch.topk, torch.max(),torch.argmax()

                value, index = torch.topk(decoder_output_t , k = 1)
                decoder_output_t [batch_size, vocab_size]

                示例代码:

                import torch
                 
                a = torch.randn((3, 5))
                print(a.size())
                print(a)
                 
                values, index = torch.topk(a, k=1)
                print(values)
                print(index)
                print(index.size())
                 
                values, index = torch.max(a, dim=-1)
                print(values)
                print(index)
                print(index.size())
                 
                index = torch.argmax(a, dim=-1)
                print(index)
                print(index.size())
                 
                index = a.argmax(dim=-1)
                print(index)
                print(index.size())
                

                运行结果:

                若使用teacher forcing ,将采用下次真实值作为下个time step的输入

                # 注意unsqueeze 相当于浅拷贝,不会对原张量进行修改
                 decoder_input = target[:,t].unsqueeze(-1)
                 target 形状 [batch_size, seq_len]
                 decoder_input 要求形状[batch_size, 1]

                示例代码:

                import torch
                 
                a = torch.randn((3, 5))
                print(a.size())
                print(a)
                 
                b = a[:, 3]
                print(b.size())
                print(b)
                c = b.unsqueeze(-1)
                print(c.size())
                print(c)

                运行结果:

                七、完成seq2seq的模型

                seq2seq.py:

                import torch
                import torch.nn as nn
                 
                 
                class Seq2Seq(nn.Module):
                    def __init__(self, encoder, decoder):
                        super(Seq2Seq, self).__init__()
                        self.encoder = encoder
                        self.decoder = decoder
                 
                    def forward(self, input, target, input_length, target_length):
                        encoder_outputs, encoder_hidden = self.encoder(input, input_length)
                        decoder_outputs, decoder_hidden = self.decoder(encoder_hidden, target, target_length)
                        return decoder_outputs, decoder_hidden
                 
                    def evaluation(self, inputs, input_length):
                        encoder_outputs, encoder_hidden = self.encoder(inputs, input_length)
                        decoded_sentence = self.decoder.evaluation(encoder_hidden)
                        return decoded_sentence
                

                八、完成训练逻辑

                为了加速训练,可以考虑在gpu上运行,那么在我们自顶一个所以的tensor和model都需要转化为CUDA支持的类型。

                当前的数据量为500多万条,在GTX1070(8G显存)上训练,大概需要90分一个epoch,耐心的等待吧

                train.py:

                import torch
                import config
                from torch import optim
                import torch.nn as nn
                from encode import Encoder
                from decode import Decoder
                from seq2seq import Seq2Seq
                from dataset import data_loader as train_dataloader
                from word_sequence import WordSequence
                 
                encoder = Encoder()
                decoder = Decoder()
                model = Seq2Seq(encoder, decoder)
                 
                # device在config文件中实现
                model.to(config.device)
                 
                print(model)
                 
                model.load_state_dict(torch.load("model/seq2seq_model.pkl"))
                optimizer = optim.Adam(model.parameters())
                optimizer.load_state_dict(torch.load("model/seq2seq_optimizer.pkl"))
                criterion = nn.NLLLoss(ignore_index=WordSequence.PAD, reduction="mean")
                 
                 
                def get_loss(decoder_outputs, target):
                    target = target.view(-1)  # [batch_size*max_len]
                    decoder_outputs = decoder_outputs.view(config.batch_size * config.max_len, -1)
                    return criterion(decoder_outputs, target)
                 
                 
                def train(epoch):
                    for idx, (input, target, input_length, target_len) in enumerate(train_dataloader):
                        input = input.to(config.device)
                        target = target.to(config.device)
                        input_length = input_length.to(config.device)
                        target_len = target_len.to(config.device)
                 
                        optimizer.zero_grad()
                        ##[seq_len,batch_size,vocab_size] [batch_size,seq_len]
                        decoder_outputs, decoder_hidden = model(input, target, input_length, target_len)
                        loss = get_loss(decoder_outputs, target)
                        loss.backward()
                        optimizer.step()
                 
                        print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                            epoch, idx * len(input), len(train_dataloader.dataset),
                                   100. * idx / len(train_dataloader), loss.item()))
                 
                        torch.save(model.state_dict(), "model/seq2seq_model.pkl")
                        torch.save(optimizer.state_dict(), 'model/seq2seq_optimizer.pkl')
                 
                 
                if __name__ == '__main__':
                    for i in range(10):
                        train(i)
                

                训练10个epoch之后的效果如下,可以看出损失依然很高:

                Train Epoch: 9 [2444544/4889919 (50%)]	Loss: 4.923604
                Train Epoch: 9 [2444800/4889919 (50%)]	Loss: 4.364594
                Train Epoch: 9 [2445056/4889919 (50%)]	Loss: 4.613254
                Train Epoch: 9 [2445312/4889919 (50%)]	Loss: 4.143538
                Train Epoch: 9 [2445568/4889919 (50%)]	Loss: 4.412729
                Train Epoch: 9 [2445824/4889919 (50%)]	Loss: 4.516526
                Train Epoch: 9 [2446080/4889919 (50%)]	Loss: 4.124945
                Train Epoch: 9 [2446336/4889919 (50%)]	Loss: 4.777015
                Train Epoch: 9 [2446592/4889919 (50%)]	Loss: 4.358538
                Train Epoch: 9 [2446848/4889919 (50%)]	Loss: 4.513412
                Train Epoch: 9 [2447104/4889919 (50%)]	Loss: 4.202757
                Train Epoch: 9 [2447360/4889919 (50%)]	Loss: 4.589584
                

                九、评估逻辑

                decoder 中添加评估方法

                def evaluate(self, encoder_hidden):
                	 """
                	 评估, 和fowward逻辑类似
                	 :param encoder_hidden: encoder最后time step的隐藏状态 [1, batch_size, hidden_size]
                	 :return:
                	 """
                	 batch_size = encoder_hidden.size(1)
                	 # 初始化一个[batch_size, 1]的SOS张量,作为第一个time step的输出
                	 decoder_input = torch.LongTensor([[config.target_ws.SOS]] * batch_size).to(config.device)
                	 # encoder_hidden 作为decoder第一个时间步的hidden [1, batch_size, hidden_size]
                	 decoder_hidden = encoder_hidden
                	 # 初始化[batch_size, seq_len, vocab_size]的outputs 拼接每个time step结果
                	 decoder_outputs = torch.zeros((batch_size, config.chatbot_target_max_len, self.vocab_size)).to(config.device)
                	 # 初始化一个空列表,存储每次的预测序列
                	 predict_result = []
                	 # 对每个时间步进行更新
                	 for t in range(config.chatbot_target_max_len):
                	     decoder_output_t, decoder_hidden = self.forward_step(decoder_input, decoder_hidden)
                	     # 拼接每个time step,decoder_output_t [batch_size, vocab_size]
                	     decoder_outputs[:, t, :] = decoder_output_t
                	     # 由于是评估,需要每次都获取预测值
                	     index = torch.argmax(decoder_output_t, dim = -1)
                	     # 更新下一时间步的输入
                	     decoder_input = index.unsqueeze(1)
                	     # 存储每个时间步的预测序列
                	     predict_result.append(index.cpu().detach().numpy()) # [[batch], [batch]...] ->[seq_len, vocab_size]
                	 # 结果转换为ndarry,每行是一个预测结果即单个字对应的索引, 所有行为seq_len长度
                	 predict_result = np.array(predict_result).transpose()  # (batch_size, seq_len)的array
                	 return decoder_outputs, predict_result
                

                eval.py

                import torch
                import torch.nn as nn
                import torch.nn.functional as F
                from dataset import get_dataloader
                import config
                import numpy as np
                from Seq2Seq import Seq2SeqModel
                import os
                from tqdm import tqdm
                 
                 
                 
                model = Seq2SeqModel().to(config.device)
                if os.path.exists('./model/chatbot_model.pkl'):
                    model.load_state_dict(torch.load('./model/chatbot_model.pkl'))
                 
                 
                def eval():
                    model.eval()
                    loss_list = []
                    test_data_loader = get_dataloader(train = False)
                    with torch.no_grad():
                        bar = tqdm(test_data_loader, desc = 'testing', total = len(test_data_loader))
                        for idx, (input, target, input_length, target_length) in enumerate(bar):
                            input = input.to(config.device)
                            target = target.to(config.device)
                            input_length = input_length.to(config.device)
                            target_length = target_length.to(config.device)
                            # 获取模型的预测结果
                            decoder_outputs, predict_result = model.evaluation(input, input_length)
                            # 计算损失
                            loss = F.nll_loss(decoder_outputs.view(-1, len(config.target_ws)), target.view(-1), ignore_index = config.target_ws.PAD)
                            loss_list.append(loss.item())
                            bar.set_description('idx{}:/{}, loss:{}'.format(idx, len(test_data_loader), np.mean(loss_list)))
                 
                 
                if __name__ == '__main__':
                    eval()
                

                interface.py:

                from cut_sentence import cut
                import torch
                import config
                from Seq2Seq import Seq2SeqModel
                import os
                 
                 
                # 模拟聊天场景,对用户输入进来的话进行回答
                def interface():
                    # 加载训练集好的模型
                    model = Seq2SeqModel().to(config.device)
                    assert os.path.exists('./model/chatbot_model.pkl') , '请先对模型进行训练!'
                    model.load_state_dict(torch.load('./model/chatbot_model.pkl'))
                    model.eval()
                 
                    while True:
                        # 输入进来的原始字符串,进行分词处理
                        input_string = input('me>>:')
                        if input_string == 'q':
                            print('下次再聊')
                            break
                        input_cuted = cut(input_string, by_word = True)
                        # 进行序列转换和tensor封装
                        input_tensor = torch.LongTensor([config.input_ws.transfrom(input_cuted, max_len = config.chatbot_input_max_len)]).to(config.device)
                        input_length_tensor = torch.LongTensor([len(input_cuted)]).to(config.device)
                        # 获取预测结果
                        outputs, predict = model.evaluation(input_tensor, input_length_tensor)
                        # 进行序列转换文本
                        result = config.target_ws.inverse_transform(predict[0])
                        print('chatbot>>:', result)
                 
                 
                if __name__ == '__main__':
                    interface()
                

                config.py:

                import torch
                from word_sequence import WordSequence
                 
                 
                chatbot_input_path = './corpus/input.txt'
                chatbot_target_path = './corpus/target.txt'
                 
                word_sequence = WordSequence()
                max_len = 9
                batch_size = 128
                embedding_dim = 100
                num_layer = 1
                hidden_size = 64
                dropout = 0.1
                model_save_path = './model.pkl'
                optimizer_save_path = './optimizer.pkl'
                device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
                

                cut.py:

                """
                分词
                """
                import jieba
                import config1
                import string
                import jieba.posseg as psg  # 返回词性
                from lib.stopwords import stopwords
                 
                # 加载词典
                jieba.load_userdict(config1.user_dict_path)
                # 准备英文字符
                letters = string.ascii_lowercase + '+'
                 
                 
                def cut_sentence_by_word(sentence):
                    """实现中英文分词"""
                    temp = ''
                    result = []
                    for word in sentence:
                        if word.lower() in letters:
                            # 如果是英文字符,则进行拼接空字符串
                            temp += word
                        else:
                            # 遇到汉字后,把英文先添加到结果中
                            if temp != '':
                                result.append(temp.lower())
                                temp = ''
                            result.append(word.strip())
                    if temp != '':
                        # 若英文出现在最后
                        result.append(temp.lower())
                    return result
                 
                 
                def cut(sentence, by_word=False, use_stopwords=True, with_sg=False):
                    """
                    :param sentence: 句子
                    :param by_word: T根据单个字分词或者F句子
                    :param use_stopwords: 是否使用停用词,默认False
                    :param with_sg: 是否返回词性
                    :return:
                    """
                    if by_word:
                        result = cut_sentence_by_word(sentence)
                    else:
                        result = psg.lcut(sentence)
                        # psg 源码返回i.word,i.flag 即词,定义的词性
                        result = [(i.word, i.flag) for i in result]
                        # 是否返回词性
                        if not with_sg:
                            result = [i[0] for i in result]
                    # 是否使用停用词
                    if use_stopwords:
                        result = [i for i in result if i not in stopwords]
                 
                    return result
                

                到此这篇关于python通过Seq2Seq实现闲聊机器人的文章就介绍到这了,更多相关Seq2Seq实现闲聊机器人内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!