Python Flask搭建yolov3目标检测系统详解流程
【人工智能项目】Python Flask搭建yolov3目标检测系统
后端代码
from flask import Flask, request, jsonify from PIL import Image import numpy as np import base64 import io import os from backend.tf_inference import load_model, inference os.environ['CUDA_VISIBLE_DEVICES'] = '0' sess, detection_graph = load_model() app = Flask(__name__) @app.route('/api/', methods=["POST"]) def main_interface(): response = request.get_json() data_str = response['image'] point = data_str.find(',') base64_str = data_str[point:] # remove unused part like this: "data:image/jpeg;base64," image = base64.b64decode(base64_str) img = Image.open(io.BytesIO(image)) if(img.mode!='RGB'): img = img.convert("RGB") # convert to numpy array. img_arr = np.array(img) # do object detection in inference function. results = inference(sess, detection_graph, img_arr, conf_thresh=0.7) print(results) return jsonify(results) @app.after_request def add_headers(response): response.headers.add('Access-Control-Allow-Origin', '*') response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization') return response if __name__ == '__main__': app.run(debug=True, host='0.0.0.0')
展示部分
python -m http.server
python app.py
前端展示部分
到此这篇关于Python Flask搭建yolov3目标检测系统详解流程的文章就介绍到这了,更多相关Python 目标检测系统内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!