带你了解C语言的数据的存储

编辑: admin 分类: c#语言 发布时间: 2022-03-15 来源:互联网
目录
  • C语言当中使用的数据类型
    • 使用的类型
      • 整型类
      • 浮点类型
  • 内存当中的存储
    • 原码、反码、补码
      • 大小端
        • 什么是大小端
    • 浮点数的存储
      • 浮点数的存储
      • 浮点数的存储规则
        • 指数 E 从内存当中取出
        • 总结

          C语言当中使用的数据类型

          使用的类型

          char 			字符数据类型
          short 			短整型
          int 			整形
          long 			长整型
          long long   	更长的整形
          float 			单精度浮点数
          double 			双精度浮点数
          

          这些里面又分为整型和浮点型

          整型类

          整型又分为有符号整型和无符号整型,[int] 可以省略掉,就像 short , long 。

          char
           unsigned char
           signed char
          short
           unsigned short [int]
           signed short [int]
          int
           unsigned int
           signed int
          long
           unsigned long [int]
           signed long [int]
          

          浮点类型

          float
          double
          

          内存当中的存储

          原码、反码、补码

          整数有三种表示方法,原码、反码、补码,这三种表示方式都有符号位和数值位两部分,符号位都是用 0 表示“正”,1 表示“负”。正数的三种表示方法都相同,负数的三种表示方法各不相同。

          原码
          直接将二进制按照正负数的形式翻译成二进制就可以。
          反码
          将原码的符号位不变,其他位依次按位取反就可以得到了。
          补码
          反码+1就得到补码。
          

          整型在内存当中存放的就是补码。

          大小端

          数据在内存中存储的时候就会有大小端的存储模式

          什么是大小端

          大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地
          址中;
          小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位,,保存在内存的高地
          址中。
          int a = 0x11223344;
          

          像 11 就是数据的高位,如果是大端存储模式的话,就保存在低位,因为我的电脑是小端存储模式,所以放在高地址当中,所以看到的是 0x11223344 。如果是大端存储的话,内存当中看到的就是 0x44332211 。

          在这里插入图片描述

          浮点数的存储

          常见的浮点数:

          3.14159
          1E10
          浮点数家族包括: float、double、long double 类型。
          

          浮点数的存储

          先看示例:

          int main()
          {
           int n = 9;
           float *pFloat = (float *)&n;
           printf("n的值为:%d\n",n);
           printf("*pFloat的值为:%f\n",*pFloat);
           *pFloat = 9.0;
           printf("num的值为:%d\n",n);
           printf("*pFloat的值为:%f\n",*pFloat);
           return 0;
          }
          

          输出为:

          在这里插入图片描述

          这里就要讨论一下浮点数的存储规则了。

          浮点数的存储规则

          根据 国际标准IEEE(电气和电子工程协会) 754,任意一个二进制浮点数V可以表示成下面的形式:

          (-1)^S * M * 2^E
          (-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
          M表示有效数字,大于等于1,小于2。
          2^E表示指数位。
          

          举例来说:

          十进制的5.0,写成二进制是 101.0 ,相当于 1.01×2^2 。

          那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

          十进制的-5.0,写成二进制是 -101.0 ,相当于 -1.01×2^2 。

          那么,s=1,M=1.01,E=2。

          IEEE 754规定:

          对于32位的浮点数,最高的 1 位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

          在这里插入图片描述

          对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

          在这里插入图片描述

          IEEE 754对有效数字M和指数E,还有一些特别规定。

          前面说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中xxxxxx表示小数部分。
          IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

          至于指数E,情况就比较复杂。

          首先,E为一个无符号整数(unsigned int)
          这意味着,如果E为8位,它的取值范围为0255;如果E为11位,它的取值范围为02047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

          指数 E 从内存当中取出

          E不全为0或不全为1

          这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

          比如:

          0.5(1/2)的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为 1.0*2^(-1),其阶码为 -1+127=126,表示为01111110,而尾数1.0去掉整数部分为0,补齐0到23位 00000000000000000000000 ,则其二进制表示形式为:

          0 01111110 00000000000000000000000
          

          E全为0

          这时,浮点数的指数E等于 1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的 1 ,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0,以及接近于 0 的很小的数字。

          E全为1

          这时,如果有效数字M全为 0,表示±无穷大(正负取决于符号位s);

          所以现在就可以解决上面的那个问题了。

          总结

          本篇文章就到这里了,希望能给你带来帮助,也希望您能够多多关注海外IDC网的更多内容!

          【文章原创作者:阿里云代理 http://www.558idc.com/aliyun.html 网络转载请说明出处】