利用 SQL Server 过滤索引提高查询语句的性能分析
大家好,我是只谈技术不剪发的 Tony 老师。
Microsoft SQL Server 过滤索引(筛选索引)是指基于满足特定条件的数据行进行索引。与全表索引(默认创建)相比,设计良好的筛选索引可以提高查询性能、减少索引维护开销并可降低索引存储开销。本文就给大家介绍一下 Microsoft SQL Server 中的过滤索引功能。
在创建过滤索引之前,我们需要了解它的适用场景。
- 在某个字段中只有少量相关值需要查询时,可以针对值的子集创建过滤索引。 例如,当字段中的值大部分为 NULL 并且查询只从非 NULL 值中进行选择时,可以为非 NULL 数据行创建筛选索引。 由此得到的索引与对相同字段定义的全表非聚集索引相比,前者更小且维护开销更低。
- 表中含有分类数据行时,可以为一种或多种类别的数据创建筛选索引。 通过将查询范围缩小为表的特定区域,这可以提高针对这些数据行的查询性能。此外,由此得到的索引与全表非聚集索引相比,前者更小且维护开销更低。
我们在创建索引时可以通过一个 WHERE 子句指定需要索引的数据行,从而创建一个过滤索引。例如,对于以下订单表 orders:
CREATE TABLE orders ( id INTEGER PRIMARY KEY, customer_id INTEGER, status VARCHAR(10) ); BEGIN DECLARE @counter INT = 1 WHILE @counter <= 1000000 BEGIN INSERT INTO orders SELECT @counter, (rand() * 100000), CASE WHEN (rand() * 100)<1 THEN 'pending' WHEN (rand() * 100)>99 THEN 'shipped' ELSE 'completed' END SET @counter = @counter + 1 END END;
订单表中总共有 100 万个订单,通常绝大部分的订单都处于完成状态。一般情况下,我们只需要针对某个用户未完成的订单进行查询跟踪,因此可以创建一个基于用户编号和状态的部分索引:
CREATE INDEX full_idx ON orders (customer_id, status);
然后我们查看以下查询语句的执行计划:
SET STATISTICS PROFILE ON SELECT * FROM orders WHERE customer_id = 5043 AND status != 'completed'; id |customer_id|status | ------+-----------+-------+ 743436| 5043|pending| 947848| 5043|shipped| Rows Executes StmtText StmtId NodeId Parent PhysicalOp LogicalOp Argument DefinedValues EstimateRows EstimateIO EstimateCPU AvgRowSize TotalSubtreeCost OutputList Warnings Type Parallel EstimateExecutions 2 1 SELECT * FROM [orders] WHERE [customer_id]=@1 AND [status]<>@2 1 1 0 NULL NULL NULL NULL 1.405213 NULL NULL NULL 0.003283546 NULL NULL SELECT 0 NULL 2 1 |--Index Seek(OBJECT:([hrdb].[dbo].[orders].[full_idx]), SEEK:([hrdb].[dbo].[orders].[customer_id]=(5043) AND [hrdb].[dbo].[orders].[status] < 'completed' OR [hrdb].[dbo].[orders].[customer_id]=(5043) AND [hrdb].[dbo].[orders].[status] > 'completed') ORDERED FORWARD) 1 2 1 Index Seek Index Seek OBJECT:([hrdb].[dbo].[orders].[full_idx]), SEEK:([hrdb].[dbo].[orders].[customer_id]=(5043) AND [hrdb].[dbo].[orders].[status] < 'completed' OR [hrdb].[dbo].[orders].[customer_id]=(5043) AND [hrdb].[dbo].[orders].[status] > 'completed') ORDERED FORWARD [hrdb].[dbo].[orders].[id], [hrdb].[dbo].[orders].[customer_id], [hrdb].[dbo].[orders].[status] 1.405213 0.003125 0.0001585457 27 0.003283546 [hrdb].[dbo].[orders].[id], [hrdb].[dbo].[orders].[customer_id], [hrdb].[dbo].[orders].[status] NULL PLAN_ROW 0 1
输出结果显示查询利用索引 full_idx 扫描查找所需的数据。
我们可以查看一下索引 full_idx 占用的空间大小:
SELECT ix.name AS "Index name", SUM(sz.used_page_count) * 8/1024.0 AS "Index size (MB)" FROM sys.dm_db_partition_stats AS sz INNER JOIN sys.indexes AS ix ON sz.object_id = ix.object_id AND sz.index_id = ix.index_id INNER JOIN sys.tables tn ON tn.OBJECT_ID = ix.object_id WHERE tn.name = 'orders' GROUP BY ix.name; Index name |Index size (MB)| ----------------------------+---------------+ full_idx | 26.171875| PK__orders__3213E83F1E3B8A3B| 29.062500|
接下来我们再创建一个部分索引,只包含未完成的订单数据,从而减少索引的数据量:
CREATE INDEX partial_idx ON orders (customer_id) WHERE status != 'completed';
索引 partial_idx 中只有 customer_id 字段,不需要 status 字段。同样可以查看一下索引 partial_idx 占用的空间大小:
SELECT ix.name AS "Index name", SUM(sz.used_page_count) * 8/1024.0 AS "Index size (MB)" FROM sys.dm_db_partition_stats AS sz INNER JOIN sys.indexes AS ix ON sz.object_id = ix.object_id AND sz.index_id = ix.index_id INNER JOIN sys.tables tn ON tn.OBJECT_ID = ix.object_id WHERE tn.name = 'orders' GROUP BY ix.name; Index name |Index size (MB)| ----------------------------+---------------+ full_idx | 26.171875| partial_idx | 0.289062| PK__orders__3213E83F1E3B8A3B| 29.062500|
索引只有 0.29 MB,而不是 26 MB,因为绝大多数订单都处于完成状态。
以下查询显式了适用过滤索引时的执行计划:
SELECT * FROM orders WITH ( INDEX ( partial_idx ) ) WHERE customer_id = 5043 AND status != 'completed'; Rows Executes StmtText StmtId NodeId Parent PhysicalOp LogicalOp Argument DefinedValues EstimateRows EstimateIO EstimateCPU AvgRowSize TotalSubtreeCost OutputList Warnings Type Parallel EstimateExecutions 2 1 SELECT * FROM orders WITH ( INDEX ( partial_idx ) ) WHERE customer_id = 5043 AND status != 'completed' 1 1 0 NULL NULL NULL NULL 1.124088 NULL NULL NULL 0.03279812 NULL NULL SELECT 0 NULL 2 1 |--Nested Loops(Inner Join, OUTER REFERENCES:([hrdb].[dbo].[orders].[id])) 1 2 1 Nested Loops Inner Join OUTER REFERENCES:([hrdb].[dbo].[orders].[id]) NULL 1.124088 0 4.15295E-05 24 0.03279812 [hrdb].[dbo].[orders].[id], [hrdb].[dbo].[orders].[customer_id], [hrdb].[dbo].[orders].[status] NULL PLAN_ROW 0 1 2 1 |--Index Seek(OBJECT:([hrdb].[dbo].[orders].[partial_idx]), SEEK:([hrdb].[dbo].[orders].[customer_id]=(5043)) ORDERED FORWARD) 1 3 2 Index Seek Index Seek OBJECT:([hrdb].[dbo].[orders].[partial_idx]), SEEK:([hrdb].[dbo].[orders].[customer_id]=(5043)) ORDERED FORWARD, FORCEDINDEX [hrdb].[dbo].[orders].[id], [hrdb].[dbo].[orders].[customer_id] 9.935287 0.003125 0.0001679288 15 0.003292929 [hrdb].[dbo].[orders].[id], [hrdb].[dbo].[orders].[customer_id] NULL PLAN_ROW 0 1 2 2 |--Clustered Index Seek(OBJECT:([hrdb].[dbo].[orders].[PK__orders__3213E83F1E3B8A3B]), SEEK:([hrdb].[dbo].[orders].[id]=[hrdb].[dbo].[orders].[id]) LOOKUP ORDERED FORWARD) 1 5 2 Clustere日本服务器http://www.558idc.com/jap.htmld Index Seek Clustered Index Seek OBJECT:([hrdb].[dbo].[orders].[PK__orders__3213E83F1E3B8A3B]), SEEK:([hrdb].[dbo].[orders].[id]=[hrdb].[dbo].[orders].[id]) LOOKUP ORDERED FORWARD, FORCEDINDEX [hrdb].[dbo].[orders].[status] 1 0.003125 0.0001581 16 0.02946366 [hrdb].[dbo].[orders].[status] NULL PLAN_ROW 0 9.935287
我们比较通过 full_idx 和 partial_idx 执行以下查询的时间:
-- 300 ms SELECT count(*) FROM orders WITH ( INDEX ( full_idx ) ) WHERE status != 'completed'; -- 10 ms SELECT count(*) FROM orders WITH ( INDEX ( partial_idx ) ) WHERE status != 'completed';
另外,过滤索引还可以用于实现其他的功能。例如,我们可以将索引 partial_idx 定义为唯一索引,从而实现每个用户只能存在一个未完成订单的约束。
DROP INDEX partial_idx ON orders; TRUNCATE TABLE orders; CREATE UNIQUE INDEX partial_idx ON orders (customer_id) WHERE status != 'completed'; INSERT INTO orders(id, customer_id, status) VALUES (1, 1, 'pending'); INSERT INTO orders(id, customer_id, status) VALUES (2, 1, 'pending'); SQL 错误 [2601] [23000]: 不能在具有唯一索引“partial_idx”的对象“dbo.orders”中插入重复键的行。重复键值为 (1)。
用户必须完成一个订单之后才能继续生成新的订单。
通过以上介绍可以看出,过滤索引是一种经过优化的非聚集索引,尤其适用于从特定数据子集中选择数据的查询。
到此这篇关于利用 SQL Server 过滤索引提高查询语句的性能分析的文章就介绍到这了,更多相关SQL Server索引提高语句性能内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!