Android逆向之dex2oat的实现解析

编辑: admin 分类: Android 发布时间: 2021-11-29 来源:互联网
目录
  • 简介
  • dex2oat介绍
  • 为什么要使用dex2oat进行转换
  • dex2oat代码
    • 1.dex2oat类定义
    • 2.OpenDexFiles函数定义
    • 3.dex2oat入口函数定义
  • 总结

    简介

    在Android系统5.0及以上系统开始逐渐丢弃Dalvik虚拟机,由于ART虚拟机对内存分配和回收都做了算法优化,降低了内存碎片化程度,回收时间也得以缩短,所有android系统5.0及以上都在主推ART虚拟机。在ART虚拟机中ART则会将Dex通过dex2oat工具编译得到一个ELF文件,它是一个可执行的文件。所以下面我们就针对ART的dex2oat实现进行做分析。

    dex2oat介绍

    Dex2oat的全称是:dalvik excutable file to optimized art file,它是一个对 android系统下的dex文件,进行编译优化的程序。通过dex2oat的编译优化,可以大大的提高android系统的启动的速度和使用手机过程的的流畅度。
    dex2oat在安卓手机环境下的存放位置为/system/bin/dex2oat

    在这里插入图片描述

    dex2oat在开源系统中的路径为\art\dex2oat\dex2oat.cc。

    在这里插入图片描述

    为什么要使用dex2oat进行转换

    在android系统中,Android 虚拟机可以识别到的是dex文件,App应用在使用过程中如果每次将dex文件加载进行内存,解释性执行字节码,效率就会变得非常低, 从而影响到用户在使用安卓手机的体验。通过利用dex2oat进行优化处理, 那么可以在android系统运行之前,利用合适的时机将dex文件字节码,提前转化为虚拟机上可以执行运行的机器码,后续直接从效率更高的机器码中运行,则运行阶段更加流畅,优化用户体验。

    dex2oat代码

    1.dex2oat类定义

    class Dex2Oat {
     public:
     
     //创建函数,返回值为bool,
      static bool Create(Dex2Oat** p_dex2oat,
                         const RuntimeOptions& runtime_options,
                         const CompilerOptions& compiler_options,
                         Compiler::Kind compiler_kind,
                         InstructionSet instruction_set,
                         InstructionSetFeatures instruction_set_features,
                         VerificationResults* verification_results,
                         DexFileToMethodInlinerMap* method_inliner_map,
                         size_t thread_count)
          SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) {
          //判断参数传递进来的释放为空
        CHECK(verification_results != nullptr);
        CHECK(method_inliner_map != nullptr);
        //用智能指针方式进行去实例化dex2oat
        std::unique_ptr<Dex2Oat> dex2oat(new Dex2Oat(&compiler_options,
                                               compiler_kind,
                                               instruction_set,
                                               instruction_set_features,
                                               verification_results,
                                               method_inliner_map,
                                               thread_count));
        if (!dex2oat->CreateRuntime(runtime_options, instruction_set)) {
          *p_dex2oat = nullptr;
          return false;
        }
        *p_dex2oat = dex2oat.release();
        return true;
      }
        //dex2oat的虚构函数,用于释放操作。
      ~Dex2Oat() {
        delete runtime_;
        LogCompletionTime();
      }
    
      void LogCompletionTime() {
        LOG(INFO) << "dex2oat took " << PrettyDuration(NanoTime() - start_ns_)
                  << " (threads: " << thread_count_ << ")";
      }
    
    
      
      //从文件上获取到类名称
      std::set<std::string>* ReadImageClassesFromFile(const char* image_classes_filename) {
        std::unique_ptr<std::ifstream> image_classes_file(new std::ifstream(image_classes_filename,
                                                                      std::ifstream::in));
        if (image_classes_file.get() == nullptr) {
          LOG(ERROR) << "Failed to open image classes file " << image_classes_filename;
          return nullptr;
        }
        std::unique_ptr<std::set<std::string>> result(ReadImageClasses(*image_classes_file));
        image_classes_file->close();
        return result.release();
      }
      
     //读取imageclasses
      std::set<std::string>* ReadImageClasses(std::istream& image_classes_stream) {
        std::unique_ptr<std::set<std::string>> image_classes(new std::set<std::string>);
        while (image_classes_stream.good()) {
          std::string dot;
          std::getline(image_classes_stream, dot);
          if (StartsWith(dot, "#") || dot.empty()) {
            continue;
          }
          std::string descriptor(DotToDescriptor(dot.c_str()));
          image_classes->insert(descriptor);
        }
        return image_classes.release();
      }
    
      // Reads the class names (java.lang.Object) and returns a set of descriptors (Ljava/lang/Object;)
      //从zip文件(apk其实就是个zip文件)读取类名称,读取到返回一个描述
      std::set<std::string>* ReadImageClassesFromZip(const char* zip_filename,
                                                             const char* image_classes_filename,
                                                             std::string* error_msg) {
             //通过智能指针进行打开zip压缩包,也就是apk包             
        std::unique_ptr<ZipArchive> zip_archive(ZipArchive::Open(zip_filename, error_msg));
        //判断打开是否失败
        if (zip_archive.get() == nullptr) {
          return nullptr;
        }
        //进行遍历zip包获取zip包里面的文件信息
        std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(image_classes_filename, error_msg));
        if (zip_entry.get() == nullptr) {
          *error_msg = StringPrintf("Failed to find '%s' within '%s': %s", image_classes_filename,
                                    zip_filename, error_msg->c_str());
          return nullptr;
        }
        std::unique_ptr<MemMap> image_classes_file(zip_entry->ExtractToMemMap(zip_filename,
                                                                              image_classes_filename,
                                                                              error_msg));
        if (image_classes_file.get() == nullptr) {
          *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", image_classes_filename,
                                    zip_filename, error_msg->c_str());
          return nullptr;
        }
        const std::string image_classes_string(reinterpret_cast<char*>(image_classes_file->Begin()),
                                               image_classes_file->Size());
        std::istringstream image_classes_stream(image_classes_string);
        return ReadImageClasses(image_classes_stream);
      }
    
      bool PatchOatCode(const CompilerDriver* compiler_driver, File* oat_file,
                        const std::string& oat_location, std::string* error_msg) {
        // We asked to include patch information but we are not making an image. We need to fix
        // everything up manually.
        std::unique_ptr<ElfFile> elf_file(ElfFile::Open(oat_file, PROT_READ|PROT_WRITE,
                                                        MAP_SHARED, error_msg));
        if (elf_file.get() == NULL) {
          LOG(ERROR) << error_msg;
          return false;
        }
        {
          ReaderMutexLock mu(Thread::Current(), *Locks::mutator_lock_);
          return ElfPatcher::Patch(compiler_driver, elf_file.get(), oat_location, error_msg);
        }
      }
        //创建一个oat文件,返回一个常量指针
      const CompilerDriver* CreateOatFile(const std::string& boot_image_option,
                                          const std::string& android_root,
                                          bool is_host,
                                          const std::vector<const DexFile*>& dex_files,
                                          File* oat_file,
                                          const std::string& oat_location,
                                          const std::string& bitcode_filename,
                                          bool image,
                                          std::unique_ptr<std::set<std::string>>& image_classes,
                                          bool dump_stats,
                                          bool dump_passes,
                                          TimingLogger& timings,
                                          CumulativeLogger& compiler_phases_timings,
                                          std::string profile_file,
                                          SafeMap<std::string, std::string>* key_value_store) {
        CHECK(key_value_store != nullptr);
    
        // Handle and ClassLoader creation needs to come after Runtime::Create
        jobject class_loader = nullptr;
        //获取自身进程
        Thread* self = Thread::Current();
        //如果boot_image_option不为空的话,执行下面的代码
        if (!boot_image_option.empty()) {
        
          ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
          std::vector<const DexFile*> class_path_files(dex_files);
          OpenClassPathFiles(runtime_->GetClassPathString(), class_path_files);
          ScopedObjectAccess soa(self);
          //循环遍历并类文件大小,并进行dex文件进行注册
          for (size_t i = 0; i < class_path_files.size(); i++) {
            class_linker->RegisterDexFile(*class_path_files[i]);
          }
          soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader);
          ScopedLocalRef<jobject> class_loader_local(soa.Env(),
              soa.Env()->AllocObject(WellKnownClasses::dalvik_system_PathClassLoader));
          class_loader = soa.Env()->NewGlobalRef(class_loader_local.get());
          
          Runtime::Current()->SetCompileTimeClassPath(class_loader, class_path_files);
        }
    
    
        std::unique_ptr<CompilerDriver> driver(new CompilerDriver(compiler_options_,
                                                                  verification_results_,
                                                                  method_inliner_map_,
                                                                  compiler_kind_,
                                                                  instruction_set_,
                                                                  instruction_set_features_,
                                                                  image,
                                                                  image_classes.release(),
                                                                  thread_count_,
                                                                  dump_stats,
                                                                  dump_passes,
                                                                  &compiler_phases_timings,
                                                                  profile_file));
    
        driver->GetCompiler()->SetBitcodeFileName(*driver.get(), bitcode_filename);
    
        driver->CompileAll(class_loader, dex_files, &timings);
    
        TimingLogger::ScopedTiming t2("dex2oat OatWriter", &timings);
        std::string image_file_location;
        uint32_t image_file_location_oat_checksum = 0;
        uintptr_t image_file_location_oat_data_begin = 0;
        int32_t image_patch_delta = 0;
        if (!driver->IsImage()) {
          TimingLogger::ScopedTiming t3("Loading image checksum", &timings);
          gc::space::ImageSpace* image_space = Runtime::Current()->GetHeap()->GetImageSpace();
          image_file_location_oat_checksum = image_space->GetImageHeader().GetOatChecksum();
          image_file_location_oat_data_begin =
              reinterpret_cast<uintptr_t>(image_space->GetImageHeader().GetOatDataBegin());
          image_file_location = image_space->GetImageFilename();
          image_patch_delta = image_space->GetImageHeader().GetPatchDelta();
        }
    
        if (!image_file_location.empty()) {
          key_value_store->Put(OatHeader::kImageLocationKey, image_file_location);
        }
    
        //oat写入操作
        OatWriter oat_writer(dex_files, image_file_location_oat_checksum,
                             image_file_location_oat_data_begin,
                             image_patch_delta,
                             driver.get(),
                             &timings,
                             key_value_store);
    
        t2.NewTiming("Writing ELF");
        if (!driver->WriteElf(android_root, is_host, dex_files, &oat_writer, oat_file)) {
          LOG(ERROR) << "Failed to write ELF file " << oat_file->GetPath();
          return nullptr;
        }
    
        // Flush result to disk. Patching code will re-open the file (mmap), so ensure that our view
        // of the file already made it there and won't be re-ordered with writes from PatchOat or
        // image patching.
        oat_file->Flush();
    
        if (!driver->IsImage() && driver->GetCompilerOptions().GetIncludePatchInformation()) {
          t2.NewTiming("Patching ELF");
          std::string error_msg;
          if (!PatchOatCode(driver.get(), oat_file, oat_location, &error_msg)) {
            LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath() << ": " << error_msg;
            return nullptr;
          }
        }
    
        return driver.release();
      }
       //创建一个映射文件,成功返回true,失败返回false
      bool CreateImageFile(const std::string& image_filename,
                           uintptr_t image_base,
                           const std::string& oat_filename,
                           const std::string& oat_location,
                           const CompilerDriver& compiler)
          LOCKS_EXCLUDED(Locks::mutator_lock_) {
        uintptr_t oat_data_begin;
        {
          // ImageWriter is scoped so it can free memory before doing FixupElf
          ImageWriter image_writer(compiler);
          if (!image_writer.Write(image_filename, image_base, oat_filename, oat_location)) {
            LOG(ERROR) << "Failed to create image file " << image_filename;
            return false;
          }
          oat_data_begin = image_writer.GetOatDataBegin();
        }
    
        std::unique_ptr<File> oat_file(OS::OpenFileReadWrite(oat_filename.c_str()));
        if (oat_file.get() == nullptr) {
          PLOG(ERROR) << "Failed to open ELF file: " << oat_filename;
          return false;
        }
        if (!ElfFixup::Fixup(oat_file.get(), oat_data_begin)) {
          LOG(ERROR) << "Failed to fixup ELF file " << oat_file->GetPath();
          return false;
        }
        return true;
      }
    
     private:
     //定义一个显示的dex2oat构造函数
      explicit Dex2Oat(const CompilerOptions* compiler_options,
                       Compiler::Kind compiler_kind,
                       InstructionSet instruction_set,
                       InstructionSetFeatures instruction_set_features,
                       VerificationResults* verification_results,
                       DexFileToMethodInlinerMap* method_inliner_map,
                       size_t thread_count)
          : compiler_options_(compiler_options),
            compiler_kind_(compiler_kind),
            instruction_set_(instruction_set),
            instruction_set_features_(instruction_set_features),
            verification_results_(verification_results),
            method_inliner_map_(method_inliner_map),
            runtime_(nullptr),
            thread_count_(thread_count),
            start_ns_(NanoTime()) {
        CHECK(compiler_options != nullptr);
        CHECK(verification_results != nullptr);
        CHECK(method_inliner_map != nullptr);
      }
    
      bool CreateRuntime(const RuntimeOptions& runtime_options, InstructionSet instruction_set)
          SHARED_TRYLOCK_FUNCTION(true, Locks::mutator_lock_) {
        if (!Runtime::Create(runtime_options, false)) {
          LOG(ERROR) << "Failed to create runtime";
          return false;
        }
        Runtime* runtime = Runtime::Current();
        runtime->SetInstructionSet(instruction_set);
        for (int i = 0; i < Runtime::kLastCalleeSaveType; i++) {
          Runtime::CalleeSaveType type = Runtime::CalleeSaveType(i);
          if (!runtime->HasCalleeSaveMethod(type)) {
            runtime->SetCalleeSaveMethod(runtime->CreateCalleeSaveMethod(type), type);
          }
        }
        runtime->GetClassLinker()->FixupDexCaches(runtime->GetResolutionMethod());
        runtime->GetClassLinker()->RunRootClinits();
        runtime_ = runtime;
        return true;
      }
    
      // Appends to dex_files any elements of class_path that it doesn't already
      // contain. This will open those dex files as necessary.
      static void OpenClassPathFiles(const std::string& class_path,
                                     std::vector<const DexFile*>& dex_files) {
       //通过定义l的vector向量的字符串
       std::vector<std::string> parsed;
        Split(class_path, ':', parsed);
        // Take Locks::mutator_lock_ so that lock ordering on the ClassLinker::dex_lock_ is maintained.
        ScopedObjectAccess soa(Thread::Current());
        for (size_t i = 0; i < parsed.size(); ++i) {
            //判断是否包含dex文件
          if (DexFilesContains(dex_files, parsed[i])) {
            continue;
          }
          std::string error_msg;
          //判断是否可以打得开dex文件
          if (!DexFile::Open(parsed[i].c_str(), parsed[i].c_str(), &error_msg, &dex_files)) {
            LOG(WARNING) << "Failed to open dex file '" << parsed[i] << "': " << error_msg;
          }
        }
      }
    
      
      //如果dex文件有指定位置的话,那么就返回为true
      static bool DexFilesContains(const std::vector<const DexFile*>& dex_files,
                                   const std::string& location) {
        //循环变量dex文件的大小,并进行判断location是否相等。
       for (size_t i = 0; i < dex_files.size(); ++i) {
          if (dex_files[i]->GetLocation() == location) {
            return true;
          }
        }
        return false;
      }
        
       //定义了个四个常量
      const CompilerOptions* const compiler_options_;
      const Compiler::Kind compiler_kind_;
    
      const InstructionSet instruction_set_;
      const InstructionSetFeatures instruction_set_features_;
    
      VerificationResults* const verification_results_;
      DexFileToMethodInlinerMap* const method_inliner_map_;
      Runtime* runtime_;
      size_t thread_count_;
      uint64_t start_ns_;
    
      DISALLOW_IMPLICIT_CONSTRUCTORS(Dex2Oat);
    };
    

    2.OpenDexFiles函数定义

    
    //OpenDexFiles打开dex文件,成功返回dex文件的大小
    static size_t OpenDexFiles(const std::vector<const char*>& dex_filenames,
                               const std::vector<const char*>& dex_locations,
                               std::vector<const DexFile*>& dex_files) {
      size_t failure_count = 0;
      //循环遍历dex文件的大小。
      for (size_t i = 0; i < dex_filenames.size(); i++) {
        const char* dex_filename = dex_filenames[i];
        const char* dex_location = dex_locations[i];
        ATRACE_BEGIN(StringPrintf("Opening dex file '%s'", dex_filenames[i]).c_str());
        std::string error_msg;
        //判断文件是否存在,
        if (!OS::FileExists(dex_filename)) {
          LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
          continue;
        }
        //真正的打开操作还是调用底层的open函数实现的。
        if (!DexFile::Open(dex_filename, dex_location, &error_msg, &dex_files)) {
          LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "': " << error_msg;
          ++failure_count;
        }
        ATRACE_END();
      }
      return failure_count;
    }
    
    

    3.dex2oat入口函数定义

    下面dex2oat函数的整个流程

    做一个arm上的workaround。
    构造Dex2oat对象
    处理命令行参数
    判断对于文件是否有写的权限
    打印命令行参数
    判断dex2oat的setup是否完成
    根据是否image分别调用CompileImage或CompileApp的处理

    
    //dex2oat两次参数通过控制窗口方式进行输入确
    static int dex2oat(int argc, char** argv) {
    #if defined(__linux__) && defined(__arm__)
      //定义变量
      int major, minor;
      //定义获取主机信息结构体
      struct utsname uts;
      //调用uname判断是否可以显示系统信息
      if (uname(&uts) != -1 &&
          sscanf(uts.release, "%d.%d", &major, &minor) == 2 &&
          ((major < 3) || ((major == 3) && (minor < 4)))) {
        // Kernels before 3.4 don't handle the ASLR well and we can run out of address
        // space (http://b/13564922). Work around the issue by inhibiting further mmap() randomization.
        int old_personality = personality(0xffffffff);
        if ((old_personality & ADDR_NO_RANDOMIZE) == 0) {
          int new_personality = personality(old_personality | ADDR_NO_RANDOMIZE);
          if (new_personality == -1) {
            LOG(WARNING) << "personality(. | ADDR_NO_RANDOMIZE) failed.";
          }
        }
      }
    #endif
        //参数传递赋值到全局变量
      original_argc = argc;
      original_argv = argv;
       //打印程序执行时间
      TimingLogger timings("compiler", false, false);
      CumulativeLogger compiler_phases_timings("compilation times");
    
      InitLogging(argv);
    
      // Skip over argv[0].
      argv++;
      argc--;
    
      if (argc == 0) {
        Usage("No arguments specified");
      }
      //到这里为止前面都是进行初始化及环境操作,真正的dex2oat功能在后面代码实现。
    
    //定义一系列的向量,字符串,常量为后面代码使用
      std::vector<const char*> dex_filenames;
      std::vector<const char*> dex_locations;
      int zip_fd = -1;
      std::string zip_location;
      std::string oat_filename;
      std::string oat_symbols;
      std::string oat_location;
      int oat_fd = -1;
      std::string bitcode_filename;
      const char* image_classes_zip_filename = nullptr;
      const char* image_classes_filename = nullptr;
      std::string image_filename;
      std::string boot_image_filename;
      uintptr_t image_base = 0;
      std::string android_root;
      std::vector<const char*> runtime_args;
      int thread_count = sysconf(_SC_NPROCESSORS_CONF);
      Compiler::Kind compiler_kind = kUsePortableCompiler
          ? Compiler::kPortable
          : Compiler::kQuick;
      const char* compiler_filter_string = nullptr;
      int huge_method_threshold = CompilerOptions::kDefaultHugeMethodThreshold;
      int large_method_threshold = CompilerOptions::kDefaultLargeMethodThreshold;
      int small_method_threshold = CompilerOptions::kDefaultSmallMethodThreshold;
      int tiny_method_threshold = CompilerOptions::kDefaultTinyMethodThreshold;
      int num_dex_methods_threshold = CompilerOptions::kDefaultNumDexMethodsThreshold;
      
    
      //从构建中获取默认的指令功能集。
      InstructionSetFeatures instruction_set_features =
          ParseFeatureList(Runtime::GetDefaultInstructionSetFeatures());
    
      InstructionSet instruction_set = kRuntimeISA;
    
      // 配置文件的定义使用
      std::string profile_file;
      double top_k_profile_threshold = CompilerOptions::kDefaultTopKProfileThreshold;
    
      bool is_host = false;
      bool dump_stats = false;
      bool dump_timing = false;
      bool dump_passes = false;
      bool include_patch_information = CompilerOptions::kDefaultIncludePatchInformation;
      bool include_debug_symbols = kIsDebugBuild;
      bool dump_slow_timing = kIsDebugBuild;
      bool watch_dog_enabled = true;
      bool generate_gdb_information = kIsDebugBuild;
    
      // Checks are all explicit until we know the architecture.
      bool implicit_null_checks = false;
      bool implicit_so_checks = false;
      bool implicit_suspend_checks = false;
     
     //下面主要代码通过一系列进行执行打印命令行操作。
    //统计用户输入的参数总和
      for (int i = 0; i < argc; i++) {
        const StringPiece option(argv[i]);
        const bool log_options = false;
        if (log_options) {
          LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
        }
        //判断字符串是否包含
        if (option.starts_with("--dex-file=")) {
           //将dex文件名称数据传入vector里面 
          dex_filenames.push_back(option.substr(strlen("--dex-file=")).data());
        } else if (option.starts_with("--dex-location=")) {
          dex_locations.push_back(option.substr(strlen("--dex-location=")).data());
          
        }
        //判断是否是zip文件,并对zip文件操作,并对字符串信息进行截取
        else if (option.starts_with("--zip-fd=")) {
          const char* zip_fd_str = option.substr(strlen("--zip-fd=")).data();
          if (!ParseInt(zip_fd_str, &zip_fd)) {
            Usage("Failed to parse --zip-fd argument '%s' as an integer", zip_fd_str);
          }
          if (zip_fd < 0) {
            Usage("--zip-fd passed a negative value %d", zip_fd);
          }
        } else if (option.starts_with("--zip-location=")) {
          zip_location = option.substr(strlen("--zip-location=")).data();
        } else if (option.starts_with("--oat-file=")) {
          oat_filename = option.substr(strlen("--oat-file=")).data();
        } else if (option.starts_with("--oat-symbols=")) {
          oat_symbols = option.substr(strlen("--oat-symbols=")).data();
        } else if (option.starts_with("--oat-fd=")) {
          const char* oat_fd_str = option.substr(strlen("--oat-fd=")).data();
          if (!ParseInt(oat_fd_str, &oat_fd)) {
            Usage("Failed to parse --oat-fd argument '%s' as an integer", oat_fd_str);
          }
          if (oat_fd < 0) {
            Usage("--oat-fd passed a negative value %d", oat_fd);
          }
        } else if (option == "--watch-dog") {
          watch_dog_enabled = true;
        } else if (option == "--no-watch-dog") {
          watch_dog_enabled = false;
        } else if (option == "--gen-gdb-info") {
          generate_gdb_information = true;
          // Debug symbols are needed for gdb information.
          include_debug_symbols = true;
        } else if (option == "--no-gen-gdb-info") {
          generate_gdb_information = false;
        } else if (option.starts_with("-j")) {
          const char* thread_count_str = option.substr(strlen("-j")).data();
          if (!ParseInt(thread_count_str, &thread_count)) {
            Usage("Failed to parse -j argument '%s' as an integer", thread_count_str);
          }
        } else if (option.starts_with("--oat-location=")) {
          oat_location = option.substr(strlen("--oat-location=")).data();
        } else if (option.starts_with("--bitcode=")) {
          bitcode_filename = option.substr(strlen("--bitcode=")).data();
        } else if (option.starts_with("--image=")) {
          image_filename = option.substr(strlen("--image=")).data();
        } else if (option.starts_with("--image-classes=")) {
          image_classes_filename = option.substr(strlen("--image-classes=")).data();
        } else if (option.starts_with("--image-classes-zip=")) {
          image_classes_zip_filename = option.substr(strlen("--image-classes-zip=")).data();
        } else if (option.starts_with("--base=")) {
          const char* image_base_str = option.substr(strlen("--base=")).data();
          char* end;
          image_base = strtoul(image_base_str, &end, 16);
          if (end == image_base_str || *end != '\0') {
            Usage("Failed to parse hexadecimal value for option %s", option.data());
          }
        } else if (option.starts_with("--boot-image=")) {
          boot_image_filename = option.substr(strlen("--boot-image=")).data();
        } else if (option.starts_with("--android-root=")) {
          android_root = option.substr(strlen("--android-root=")).data();
        } 
        else if (option.starts_with("--instruction-set=")) {
          StringPiece instruction_set_str = option.substr(strlen("--instruction-set=")).data();
          if (instruction_set_str == "arm") {
            instruction_set = kThumb2;
          } else if (instruction_set_str == "arm64") {
            instruction_set = kArm64;
          } else if (instruction_set_str == "mips") {
            instruction_set = kMips;
          } else if (instruction_set_str == "x86") {
            instruction_set = kX86;
          } else if (instruction_set_str == "x86_64") {
            instruction_set = kX86_64;
          }
        } else if (option.starts_with("--instruction-set-features=")) {
          StringPiece str = option.substr(strlen("--instruction-set-features=")).data();
          instruction_set_features = ParseFeatureList(str.as_string());
        } else if (option.starts_with("--compiler-backend=")) {
          StringPiece backend_str = option.substr(strlen("--compiler-backend=")).data();
          if (backend_str == "Quick") {
            compiler_kind = Compiler::kQuick;
          } else if (backend_str == "Optimizing") {
            compiler_kind = Compiler::kOptimizing;
          } else if (backend_str == "Portable") {
            compiler_kind = Compiler::kPortable;
          }
        } else if (option.starts_with("--compiler-filter=")) {
          compiler_filter_string = option.substr(strlen("--compiler-filter=")).data();
        } else if (option.starts_with("--huge-method-max=")) {
          const char* threshold = option.substr(strlen("--huge-method-max=")).data();
          if (!ParseInt(threshold, &huge_method_threshold)) {
            Usage("Failed to parse --huge-method-max '%s' as an integer", threshold);
          }
          if (huge_method_threshold < 0) {
            Usage("--huge-method-max passed a negative value %s", huge_method_threshold);
          }
        } else if (option.starts_with("--large-method-max=")) {
          const char* threshold = option.substr(strlen("--large-method-max=")).data();
          if (!ParseInt(threshold, &large_method_threshold)) {
            Usage("Failed to parse --large-method-max '%s' as an integer", threshold);
          }
          if (large_method_threshold < 0) {
            Usage("--large-method-max passed a negative value %s", large_method_threshold);
          }
        } else if (option.starts_with("--small-method-max=")) {
          const char* threshold = option.substr(strlen("--small-method-max=")).data();
          if (!ParseInt(threshold, &small_method_threshold)) {
            Usage("Failed to parse --small-method-max '%s' as an integer", threshold);
          }
          if (small_method_threshold < 0) {
            Usage("--small-method-max passed a negative value %s", small_method_threshold);
          }
        } else if (option.starts_with("--tiny-method-max=")) {
          const char* threshold = option.substr(strlen("--tiny-method-max=")).data();
          if (!ParseInt(threshold, &tiny_method_threshold)) {
            Usage("Failed to parse --tiny-method-max '%s' as an integer", threshold);
          }
          if (tiny_method_threshold < 0) {
            Usage("--tiny-method-max passed a negative value %s", tiny_method_threshold);
          }
        } else if (option.starts_with("--num-dex-methods=")) {
          const char* threshold = option.substr(strlen("--num-dex-methods=")).data();
          if (!ParseInt(threshold, &num_dex_methods_threshold)) {
            Usage("Failed to parse --num-dex-methods '%s' as an integer", threshold);
          }
          if (num_dex_methods_threshold < 0) {
            Usage("--num-dex-methods passed a negative value %s", num_dex_methods_threshold);
          }
        } else if (option == "--host") {
          is_host = true;
        } else if (option == "--runtime-arg") {
          if (++i >= argc) {
            Usage("Missing required argument for --runtime-arg");
          }
          if (log_options) {
            LOG(INFO) << "dex2oat: option[" << i << "]=" << argv[i];
          }
          runtime_args.push_back(argv[i]);
        } else if (option == "--dump-timing") {
          dump_timing = true;
        } else if (option == "--dump-passes") {
          dump_passes = true;
        } else if (option == "--dump-stats") {
          dump_stats = true;
        } else if (option == "--include-debug-symbols" || option == "--no-strip-symbols") {
          include_debug_symbols = true;
        } else if (option == "--no-include-debug-symbols" || option == "--strip-symbols") {
          include_debug_symbols = false;
          generate_gdb_information = false;  // Depends on debug symbols, see above.
        } else if (option.starts_with("--profile-file=")) {
          profile_file = option.substr(strlen("--profile-file=")).data();
          VLOG(compiler) << "dex2oat: profile file is " << profile_file;
        } else if (option == "--no-profile-file") {
          // No profile
        } else if (option.starts_with("--top-k-profile-threshold=")) {
          ParseDouble(option.data(), '=', 0.0, 100.0, &top_k_profile_threshold);
        } else if (option == "--print-pass-names") {
          PassDriverMEOpts::PrintPassNames();
        } else if (option.starts_with("--disable-passes=")) {
          std::string disable_passes = option.substr(strlen("--disable-passes=")).data();
          PassDriverMEOpts::CreateDefaultPassList(disable_passes);
        } else if (option.starts_with("--print-passes=")) {
          std::string print_passes = option.substr(strlen("--print-passes=")).data();
          PassDriverMEOpts::SetPrintPassList(print_passes);
        } else if (option == "--print-all-passes") {
          PassDriverMEOpts::SetPrintAllPasses();
        } else if (option.starts_with("--dump-cfg-passes=")) {
          std::string dump_passes = option.substr(strlen("--dump-cfg-passes=")).data();
          PassDriverMEOpts::SetDumpPassList(dump_passes);
        } else if (option == "--include-patch-information") {
          include_patch_information = true;
        } else if (option == "--no-include-patch-information") {
          include_patch_information = false;
        } else {
          Usage("Unknown argument %s", option.data());
        }
      }
       //判断oat文件是否存在
      if (oat_filename.empty() && oat_fd == -1) {
        Usage("Output must be supplied with either --oat-file or --oat-fd");
      }
    
      if (!oat_filename.empty() && oat_fd != -1) {
        Usage("--oat-file should not be used with --oat-fd");
      }
       //判断oat符号表是否为空
      if (!oat_symbols.empty() && oat_fd != -1) {
        Usage("--oat-symbols should not be used with --oat-fd");
      }
    
      if (!oat_symbols.empty() && is_host) {
        Usage("--oat-symbols should not be used with --host");
      }
    
      if (oat_fd != -1 && !image_filename.empty()) {
        Usage("--oat-fd should not be used with --image");
      }
       //判断android_root是否为空
      if (android_root.empty()) {
        const char* android_root_env_var = getenv("ANDROID_ROOT");
        if (android_root_env_var == nullptr) {
          Usage("--android-root unspecified and ANDROID_ROOT not set");
        }
        android_root += android_root_env_var;
      }
    
      bool image = (!image_filename.empty());
      if (!image && boot_image_filename.empty()) {
        boot_image_filename += android_root;
        boot_image_filename += "/framework/boot.art";
      }
      std::string boot_image_option;
      if (!boot_image_filename.empty()) {
        boot_image_option += "-Ximage:";
        boot_image_option += boot_image_filename;
      }
    
      if (image_classes_filename != nullptr && !image) {
        Usage("--image-classes should only be used with --image");
      }
    
      if (image_classes_filename != nullptr && !boot_image_option.empty()) {
        Usage("--image-classes should not be used with --boot-image");
      }
    
      if (image_classes_zip_filename != nullptr && image_classes_filename == nullptr) {
        Usage("--image-classes-zip should be used with --image-classes");
      }
    
      if (dex_filenames.empty() && zip_fd == -1) {
        Usage("Input must be supplied with either --dex-file or --zip-fd");
      }
    
      if (!dex_filenames.empty() && zip_fd != -1) {
        Usage("--dex-file should not be used with --zip-fd");
      }
    
      if (!dex_filenames.empty() && !zip_location.empty()) {
        Usage("--dex-file should not be used with --zip-location");
      }
    
      if (dex_locations.empty()) {
        for (size_t i = 0; i < dex_filenames.size(); i++) {
          dex_locations.push_back(dex_filenames[i]);
        }
      } else if (dex_locations.size() != dex_filenames.size()) {
        Usage("--dex-location arguments do not match --dex-file arguments");
      }
    
      if (zip_fd != -1 && zip_location.empty()) {
        Usage("--zip-location should be supplied with --zip-fd");
      }
    
      if (boot_image_option.empty()) {
        if (image_base == 0) {
          Usage("Non-zero --base not specified");
        }
      }
    
      std::string oat_stripped(oat_filename);
      std::string oat_unstripped;
      if (!oat_symbols.empty()) {
        oat_unstripped += oat_symbols;
      } else {
        oat_unstripped += oat_filename;
      }
    
      if (compiler_filter_string == nullptr) {
        if (instruction_set == kMips64) {
          // TODO: fix compiler for Mips64.
          compiler_filter_string = "interpret-only";
        } else if (image) {
          compiler_filter_string = "speed";
        } else {
    #if ART_SMALL_MODE
          compiler_filter_string = "interpret-only";
    #else
          compiler_filter_string = "speed";
    #endif
        }
      }
      CHECK(compiler_filter_string != nullptr);
      CompilerOptions::CompilerFilter compiler_filter = CompilerOptions::kDefaultCompilerFilter;
      if (strcmp(compiler_filter_string, "verify-none") == 0) {
        compiler_filter = CompilerOptions::kVerifyNone;
      } else if (strcmp(compiler_filter_string, "interpret-only") == 0) {
        compiler_filter = CompilerOptions::kInterpretOnly;
      } else if (strcmp(compiler_filter_string, "space") == 0) {
        compiler_filter = CompilerOptions::kSpace;
      } else if (strcmp(compiler_filter_string, "balanced") == 0) {
        compiler_filter = CompilerOptions::kBalanced;
      } else if (strcmp(compiler_filter_string, "speed") == 0) {
        compiler_filter = CompilerOptions::kSpeed;
      } else if (strcmp(compiler_filter_string, "everything") == 0) {
        compiler_filter = CompilerOptions::kEverything;
      } else {
        Usage("Unknown --compiler-filter value %s", compiler_filter_string);
      }
    
      // Set the compilation target's implicit checks options.
      switch (instruction_set) {
        case kArm:
        case kThumb2:
        case kArm64:
        case kX86:
        case kX86_64:
          implicit_null_checks = true;
          implicit_so_checks = true;
          break;
    
        default:
          // Defaults are correct.
          break;
      }
    
      std::unique_ptr<CompilerOptions> compiler_options(new CompilerOptions(compiler_filter,
                                                                            huge_method_threshold,
                                                                            large_method_threshold,
                                                                            small_method_threshold,
                                                                            tiny_method_threshold,
                                                                            num_dex_methods_threshold,
                                                                            generate_gdb_information,
                                                                            include_patch_information,
                                                                            top_k_profile_threshold,
                                                                            include_debug_symbols,
                                                                            implicit_null_checks,
                                                                            implicit_so_checks,
                                                                            implicit_suspend_checks
    #ifdef ART_SEA_IR_MODE
                                                                            , compiler_options.sea_ir_ =
                                                                                  true;
    #endif
      ));  // NOLINT(whitespace/parens)
    
      // Done with usage checks, enable watchdog if requested
      WatchDog watch_dog(watch_dog_enabled);
    
      // Check early that the result of compilation can be written
      std::unique_ptr<File> oat_file;
      bool create_file = !oat_unstripped.empty();  // as opposed to using open file descriptor
      if (create_file) {
        oat_file.reset(OS::CreateEmptyFile(oat_unstripped.c_str()));
        if (oat_location.empty()) {
          oat_location = oat_filename;
        }
      } else {
        oat_file.reset(new File(oat_fd, oat_location));
        oat_file->DisableAutoClose();
        oat_file->SetLength(0);
      }
      if (oat_file.get() == nullptr) {
        PLOG(ERROR) << "Failed to create oat file: " << oat_location;
        return EXIT_FAILURE;
      }
      if (create_file && fchmod(oat_file->Fd(), 0644) != 0) {
        PLOG(ERROR) << "Failed to make oat file world readable: " << oat_location;
        return EXIT_FAILURE;
      }
    //开始真正的执行dex2oat工作了
      timings.StartTiming("dex2oat Setup");
      LOG(INFO) << CommandLine();
    
      RuntimeOptions runtime_options;
      std::vector<const DexFile*> boot_class_path;
      art::MemMap::Init();  // For ZipEntry::ExtractToMemMap.
      if (boot_image_option.empty()) {
      //打开zip文件中的dex文件
        size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, boot_class_path);
        if (failure_count > 0) {
          LOG(ERROR) << "Failed to open some dex files: " << failure_count;
          return EXIT_FAILURE;
        }
        runtime_options.push_back(std::make_pair("bootclasspath", &boot_class_path));
      } else {
        runtime_options.push_back(std::make_pair(boot_image_option.c_str(), nullptr));
      }
      for (size_t i = 0; i < runtime_args.size(); i++) {
        runtime_options.push_back(std::make_pair(runtime_args[i], nullptr));
      }
    
      std::unique_ptr<VerificationResults> verification_results(new VerificationResults(
                                                                compiler_options.get()));
      DexFileToMethodInlinerMap method_inliner_map;
      QuickCompilerCallbacks callbacks(verification_results.get(), &method_inliner_map);
      runtime_options.push_back(std::make_pair("compilercallbacks", &callbacks));
      runtime_options.push_back(
          std::make_pair("imageinstructionset",
                         reinterpret_cast<const void*>(GetInstructionSetString(instruction_set))));
    
      Dex2Oat* p_dex2oat;
      //创建一个dex2oat
      if (!Dex2Oat::Create(&p_dex2oat,
                           runtime_options,
                           *compiler_options,
                           compiler_kind,
                           instruction_set,
                           instruction_set_features,
                           verification_results.get(),
                           &method_inliner_map,
                           thread_count)) {
        LOG(ERROR) << "Failed to create dex2oat";
        return EXIT_FAILURE;
      }
      std::unique_ptr<Dex2Oat> dex2oat(p_dex2oat);
    
     
      Thread* self = Thread::Current();
      self->TransitionFromRunnableToSuspended(kNative);
    
      WellKnownClasses::Init(self->GetJniEnv());
    
      // If --image-classes was specified, calculate the full list of classes to include in the image
      std::unique_ptr<std::set<std::string>> image_classes(nullptr);
      if (image_classes_filename != nullptr) {
        std::string error_msg;
        if (image_classes_zip_filename != nullptr) {
          image_classes.reset(dex2oat->ReadImageClassesFromZip(image_classes_zip_filename,
                                                               image_classes_filename,
                                                               &error_msg));
        } else {
          image_classes.reset(dex2oat->ReadImageClassesFromFile(image_classes_filename));
        }
        if (image_classes.get() == nullptr) {
          LOG(ERROR) << "Failed to create list of image classes from '" << image_classes_filename <<
              "': " << error_msg;
          return EXIT_FAILURE;
        }
      } else if (image) {
        image_classes.reset(new std::set<std::string>);
      }
    
      std::vector<const DexFile*> dex_files;
      if (boot_image_option.empty()) {
        dex_files = Runtime::Current()->GetClassLinker()->GetBootClassPath();
      } else {
        if (dex_filenames.empty()) {
          ATRACE_BEGIN("Opening zip archive from file descriptor");
          std::string error_msg;
          std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(zip_fd, zip_location.c_str(),
                                                                   &error_msg));
          if (zip_archive.get() == nullptr) {
            LOG(ERROR) << "Failed to open zip from file descriptor for '" << zip_location << "': "
                << error_msg;
            return EXIT_FAILURE;
          }
          if (!DexFile::OpenFromZip(*zip_archive.get(), zip_location, &error_msg, &dex_files)) {
            LOG(ERROR) << "Failed to open dex from file descriptor for zip file '" << zip_location
                << "': " << error_msg;
            return EXIT_FAILURE;
          }
          ATRACE_END();
        } else {
          size_t failure_count = OpenDexFiles(dex_filenames, dex_locations, dex_files);
          if (failure_count > 0) {
            LOG(ERROR) << "Failed to open some dex files: " << failure_count;
            return EXIT_FAILURE;
          }
        }
    
        const bool kSaveDexInput = false;
        if (kSaveDexInput) {
          for (size_t i = 0; i < dex_files.size(); ++i) {
            const DexFile* dex_file = dex_files[i];
            std::string tmp_file_name(StringPrintf("/data/local/tmp/dex2oat.%d.%zd.dex", getpid(), i));
            std::unique_ptr<File> tmp_file(OS::CreateEmptyFile(tmp_file_name.c_str()));
            if (tmp_file.get() == nullptr) {
                PLOG(ERROR) << "Failed to open file " << tmp_file_name
                            << ". Try: adb shell chmod 777 /data/local/tmp";
                continue;
            }
            //进行对dex文件写入操作
            tmp_file->WriteFully(dex_file->Begin(), dex_file->Size());
            LOG(INFO) << "Wrote input to " << tmp_file_name;
          }
        }
      }
      // Ensure opened dex files are writable for dex-to-dex transformations.
      for (const auto& dex_file : dex_files) {
        if (!dex_file->EnableWrite()) {
          PLOG(ERROR) << "Failed to make .dex file writeable '" << dex_file->GetLocation() << "'\n";
        }
      }
    
      if (!image && compiler_options->IsCompilationEnabled()) {
        size_t num_methods = 0;
        for (size_t i = 0; i != dex_files.size(); ++i) {
          const DexFile* dex_file = dex_files[i];
          CHECK(dex_file != nullptr);
          num_methods += dex_file->NumMethodIds();
        }
        if (num_methods <= compiler_options->GetNumDexMethodsThreshold()) {
          compiler_options->SetCompilerFilter(CompilerOptions::kSpeed);
          VLOG(compiler) << "Below method threshold, compiling anyways";
        }
      }
    
      // Fill some values into the key-value store for the oat header.
      std::unique_ptr<SafeMap<std::string, std::string> > key_value_store(
          new SafeMap<std::string, std::string>());
    
      // Insert some compiler things.
      std::ostringstream oss;
      for (int i = 0; i < argc; ++i) {
        if (i > 0) {
          oss << ' ';
        }
        oss << argv[i];
      }
      key_value_store->Put(OatHeader::kDex2OatCmdLineKey, oss.str());
      oss.str("");  // Reset.
      oss << kRuntimeISA;
      key_value_store->Put(OatHeader::kDex2OatHostKey, oss.str());
    
    //编译dex文件功能,主要将dex文件转换我oat文件
      std::unique_ptr<const CompilerDriver> compiler(dex2oat->CreateOatFile(boot_image_option,
                                                                            android_root,
                                                                            is_host,
                                                                            dex_files,
                                                                            oat_file.get(),
                                                                            oat_location,
                                                                            bitcode_filename,
                                                                            image,
                                                                            image_classes,
                                                                            dump_stats,
                                                                            dump_passes,
                                                                            timings,
                                                                            compiler_phases_timings,
                                                                            profile_file,
                                                                            key_value_store.get()));
      if (compiler.get() == nullptr) {
        LOG(ERROR) << "Failed to create oat file: " << oat_location;
        return EXIT_FAILURE;
      }
    
      VLOG(compiler) << "Oat file written successfully (unstripped): " << oat_location;
    
      if (image) {
         //打印运行时间日志 
        TimingLogger::ScopedTiming t("dex2oat ImageWriter", &timings);
        //创建一个oat映射文件
        bool image_creation_success = dex2oat->CreateImageFile(image_filename,
                                                               image_base,
                                                               oat_unstripped,
                                                               oat_location,
                                                               *compiler.get());
        if (!image_creation_success) {
          return EXIT_FAILURE;
        }
        VLOG(compiler) << "Image written successfully: " << image_filename;
      }
    
      if (is_host) {
        timings.EndTiming();
        if (dump_timing || (dump_slow_timing && timings.GetTotalNs() > MsToNs(1000))) {
          LOG(INFO) << Dumpable<TimingLogger>(timings);
        }
        if (dump_passes) {
          LOG(INFO) << Dumpable<CumulativeLogger>(*compiler.get()->GetTimingsLogger());
        }
        return EXIT_SUCCESS;
      }
    
      if (oat_unstripped != oat_stripped) {
         //记录程序执行时间
        TimingLogger::ScopedTiming t("dex2oat OatFile copy", &timings);
        oat_file.reset();
        //用智能指针方式进行打开读取文件
         std::unique_ptr<File> in(OS::OpenFileForReading(oat_unstripped.c_str()));
        std::unique_ptr<File> out(OS::CreateEmptyFile(oat_stripped.c_str()));
        size_t buffer_size = 8192;
        std::unique_ptr<uint8_t> buffer(new uint8_t[buffer_size]);
        while (true) {
          int bytes_read = TEMP_FAILURE_RETRY(read(in->Fd(), buffer.get(), buffer_size));
          if (bytes_read <= 0) {
            break;
          }
          bool write_ok = out->WriteFully(buffer.get(), bytes_read);
          CHECK(write_ok);
        }
        oat_file.reset(out.release());
        VLOG(compiler) << "Oat file copied successfully (stripped): " << oat_stripped;
      }
    
    #if ART_USE_PORTABLE_COMPILER  // We currently only generate symbols on Portable
      if (!compiler_options.GetIncludeDebugSymbols()) {
        timings.NewSplit("dex2oat ElfStripper");
        // Strip unneeded sections for target
        off_t seek_actual = lseek(oat_file->Fd(), 0, SEEK_SET);
        CHECK_EQ(0, seek_actual);
        std::string error_msg;
        CHECK(ElfStripper::Strip(oat_file.get(), &error_msg)) << error_msg;
    
    
        // 成功的编译成oat文件
        VLOG(compiler) << "Oat file written successfully (stripped): " << oat_location;
      } else {
        VLOG(compiler) << "Oat file written successfully without stripping: " << oat_location;
      }
    #endif  // ART_USE_PORTABLE_COMPILER
    
      timings.EndTiming();
    
      if (dump_timing || (dump_slow_timing && timings.GetTotalNs() > MsToNs(1000))) {
        LOG(INFO) << Dumpable<TimingLogger>(timings);
      }
      if (dump_passes) {
        LOG(INFO) << Dumpable<CumulativeLogger>(compiler_phases_timings);
      }
    
      if (!kIsDebugBuild && (RUNNING_ON_VALGRIND == 0)) {
        dex2oat->LogCompletionTime();
        exit(EXIT_SUCCESS);
      }
    
      return EXIT_SUCCESS;
    }  // NOLINT(readability/fn_size)
    }  // namespace art
    

    总结

    基于以上的分析,我们可以指定dex2oat在我们现在android系统运行过程中占据很重要的地位,因为app安装,手机屏幕滑动,系统启动等等都需要和dex2oat打交道,同时dex2oat在加壳和脱壳方面应用场景,在脱壳方面通过修改dex2oat代码可以进行更好的脱壳。

    【文章出处:美国cn2站群服务器 欢迎转载】