Python与Matlab实现快速傅里叶变化的区别
注:两种语言的fft算法是有区别的,最后细聊!
Matlab的fftlw函数
输入是信号序列、对应的时间序列、以及是否作图,输出可以得到单边归一化之后的频率与对应的振幅,通过输出可以直接画出常用的频谱图!
function [ F,M ] = fftlw( x,y,draw ) %FFTLW 快速傅里叶变化2021.10.26 %输入 x--时间 y--信号 draw--1为画频谱图,0为不画 %输出 F--频率 M--幅值 N=length(y); %采样点数 if(mod(N,2)>0) N=N-1; end Fs=(N-1)/(x(N)-x(1)); %采样频率 F=(N/2:N-1)*Fs/N-Fs/2 ; %频率 y2=abs(fftshift(fft(y(1:N)))); %快速傅里叶变化 M=2*y2(N/2+1:N)/N; %归一化 M(1)=M(1)/2; %常量除以2 if draw==1 %可视化 figure plot(F,M) xlabel('f/HZ') ylabel('amplitude') title('频谱图') end end
Python的fftlw函数
输入与matlab的略有点不同,分别是采样频率、信号序列、是否作图,输出与matlab的函数一致。
import numpy as np from scipy.fftpack import fft,ifft import matplotlib.pyplot as plt def fftlw(Fs,y,draw): ''' Parameters ---------- Fs : 采样频率 y : 信号序列 draw :1为画频谱图,0为不画 Returns ------- f : 频率 M : 幅值 ''' L=len(y) #采样点数 f = np.arange(int(L / 2)) * Fs / L #频率 #M = np.abs(np.fft.fft(y))*2/L #采用numpy.fft.fft()函数并归一化 M = np.abs((fft(y))) *2/L #采用scipy.fftpack.fft()函数并归一化 M = M[0:int(L / 2)] #取单边谱 M[0]=M[0]/2 #常量除以2 if draw==1: #可视化 plt.figure() plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus'] = False plt.plot(f,M) plt.xlabel('f/HZ') plt.ylabel('amplitude') plt.title('频谱图') return f,M
构造简单的信号对比两种语言fftlw效果
举个例子,构造如下信号验证所写函数的正确性:
y=3+t⋅sin(2πt⋅100)+3⋅sin(2πt⋅200)
其中,包括常数项,周期项和趋势项,理论上该信号的频率应该为0Hz、100Hz、200Hz(具体怎么算的补一补书知识)。在这里,我设置采样频率 fs=10000,产生10000个数据点,时域图如下:
Matlab调用fftlw函数的主函数
fs=10000; %采样频率 x=0:1/fs:(10000-1)/fs; %时间序列 y=sin(2*pi*x*100).*x+3*sin(2*pi*x*200)+3; %信号序列 figure %画时域图 plot(x,y) title('时域图') xlabel('t/s') ylabel('amplitude') [f,m]=fftlw(x,y,1); %快速傅里叶变化并画频谱图
得到的频谱图如下:发现0Hz、100Hz、200Hz处的幅值分别为3,0.5,3。0Hz与200Hz处的幅值完美对应时域中常数项与s i n ( 2 π t ⋅ 200 ) 的系数;而100Hz项sin(2πt⋅200)的系数不是常数而是 t,且时间是0-1s,该项傅里叶变化得到的是该段时间内的平均幅值,也就是0.5。
Python调用fftlw函数的主函数
直接加在def fftlw()的后文调用他就行。
Fs=10000 #采用频率 L=10000 #采样点数 t=np.arange(0,L/Fs,1/Fs) #时间序列 y=np.sin(2*np.pi*t*100)*t+3*np.sin(2*np.pi*t*200)+3 #信号序列 f,M=fftlw(Fs,y,1) #快速傅里叶变化并画频谱图
图和matlab的一模一样!但是!
采用实际的振动信号对比两种语言fftlw效果
数据来源于西储大学转子实验台振动信号,采样频率为12000Hz,现取正常状态下、转速1796 rpm轴承振动信号1000个点如下。粗略的观察,有一个低频信号大概周期为0.035 s,频率大概 29Hz。
Matlab画频谱图
Python画频谱图
python的频谱图的幅值与原始数据量级差别较大,与matlab的频谱图也毫不相关,可能是底层傅里叶变换的算法不同所致,具体哪个正确还带进一步考证!!!
到此这篇关于Python与Matlab实现快速傅里叶变化的区别的文章就介绍到这了,更多相关Python 傅里叶变化内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!
【文章转自:韩国cn2服务器 转载请保留连接】