python算法练习之兔子产子(斐波那切数列)
目录
- 1.问题描述
- 2.问题分析
- 3.算法设计
- 4.完整程序
1.问题描述
有一对兔子,从出生后的第3个月起每个月都生一对兔子。小兔子长到第3个月后每个月又生一对兔子,假设所有的兔子都不死,问30个月内每个月的兔子总对数为多少?
2.问题分析
兔子产子问题是一个有趣的古典数学问题,我们画一张表来找下兔子数的规律,如下表所示
月数
小兔子对数
中兔子对数
老兔子对数
兔子总对数
说明:不满1个月的兔子为小兔子,满1个月不满2个月的为中兔子,满3个月以上的为老兔子。
可以看出,每个月的兔子总数依次为1,1,2,3,5,8,13...这就是Fibonacci
数列。总结数列规律即为从前两个月的兔子对数可以推出第3个月的兔子对数
3.算法设计
本题目是典型的迭代循环,即是个不断用新值取代变量的旧值,然后由变量旧值递推出变量新值的过程。这种选代与这些因素有关:初值
、迭代公式
和选代次数
。
经过问题分析,算法可以描述为:
fibn-1 = fiibn-1 = 1(n<3) 初值
fibn = fibn-1 + fibn-2(n≥3) 迭代公式
用 Python
语言來描述迭代公式即为fib=fibl+fib2
,其中fib为当前新求出的免子对数,fibl 为前一个月的兔子对数,fib2
为前两个月的免子对数,然后为下一次选代做准备,fib②给fib1①给fib2,进行如下的赋值 fib2=fib1
, fibl=fib
,要注意赋值的次序;选代次数由循环变量控制,为所求的月数。
4.完整程序
Bash if __name__=="__main__": fib1 = 1 fib2 = 1 i = 1 while i <= 15: #每次求两个,因此循环变量循环到15 print("%8d %8d" %(fib1, fib2), end=" ") if i % 2 == 0: print() fib1 = fib1 + fib2 # 最新一个月的兔子数 fib2 = fib1 + fib2 # 第4个月的兔子数 i += 1
到此这篇关于python
算法练习之兔子产子(斐波那切数列)的文章就介绍到这了,更多相关python
算法之兔子产子内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!