Python Matplotlib绘制条形图的全过程

编辑: admin 分类: python 发布时间: 2021-12-03 来源:互联网
目录
  • 条形图
  • 单组条形图
  • 水平条形图
  • 多组条形图
  • 堆积条形图
  • 对称条形图
  • 总结

条形图

条形图具有丰富的表现形式,常见的类型包括单组条形图,多组条形图,堆积条形图和对称条形图等。

单组条形图

条形图的每种表现形式都可以绘制成垂直条形图或水平条形图,以单组条形图的两种绘制方式为例。

垂直条形图

import matplotlib.pyplot as plt
data = [10., 20., 5., 15.]
plt.bar(range(len(data)), data)
plt.show()

Tips:plt.plot()函数的作用是:接收两个参数,包括每个条形的x坐标和每个条行的高度。

通过可选参数width,pyplot.bar()提供了一种控制条形图中条状宽度的方法:

import matplotlib.pyplot as plt
data = [10., 20., 5., 15.]
plt.bar(range(len(data)), data, width=0.5)
plt.show()

水平条形图

如果更喜欢水平条形外观,就可以使用plt.barh()函数,在用法方面与plt.bar()基本相同,但是修改条形宽度(或者在水平条形图中应该称为高度)的参数需要使用height:

import matplotlib.pyplot as plt
data = [10., 20., 5., 15.]
plt.barh(range(len(data)), data, height=0.5)
plt.show()

多组条形图

当需要比较不同年份相应季度的销量等此类需求时,我们可能需要多组条形图。

import numpy as np
import matplotlib.pyplot as plt
data = [[10., 20., 30., 20.],[40., 25., 53., 18.],[6., 22., 52., 19.]]
x = np.arange(4)
plt.bar(x + 0.00, data[0], color = 'b', width = 0.25)
plt.bar(x + 0.25, data[1], color = 'g', width = 0.25)
plt.bar(x + 0.50, data[2], color = 'r', width = 0.25)
plt.show()

堆积条形图

通过使用plt.bar()函数中的可选参数,可以绘制堆积条形图。

import matplotlib.pyplot as plt
y_1 = [3., 25., 45., 22.]
y_2 = [6., 25., 50., 25.]
x = range(4)
plt.bar(x, y_1, color = 'b')
plt.bar(x, y_2, color = 'r', bottom = y_1)
plt.show()

Tips:plt.bar()函数的可选参数bottom允许指定条形图的起始值。

可以结合for循环,利用延迟呈现机制堆叠更多的条形:

import numpy as np
import matplotlib.pyplot as plt
data = np.array([[5., 30., 45., 22.], [5., 25., 50., 20.], [1., 2., 1., 1.]])
x = np.arange(data.shape[1])
for i in range(data.shape[0]):
    plt.bar(x, data[i], bottom = np.sum(data[:i], axis = 0))
plt.show() 

对称条形图

一个简单且有用的技巧是对称绘制两个条形图。例如想要绘制不同年龄段的男性与女性数量的对比:

import numpy as np
import matplotlib.pyplot as plt
w_pop = np.array([5., 30., 45., 22.])
m_pop = np.array( [5., 25., 50., 20.])
x = np.arange(4)
plt.barh(x, w_pop)
plt.barh(x, -m_pop)
plt.show()

图中女性人口的条形图照常绘制。然而,男性人口的条形图的条形图的条形图向左延伸,而不是向右延伸。可以使用数据的负值来快速实现对称条形图的绘制。

总结

到此这篇关于Python Matplotlib绘制条形图的文章就介绍到这了,更多相关Python Matplotlib绘制条形图内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

【本文来源:http://www.1234xp.coml转载请保留出处】