Python著名游戏实战之方块连接 我的世界

编辑: admin 分类: python 发布时间: 2021-12-03 来源:互联网
目录
  • 导语
  • 正文
    • (1)《我是世界》游戏规则。
    • (2)主要程序代码。
    • (3)效果图如下。
  • ​总结

    导语

    《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

    图片

    方块连接世界,云游大好河山。

    图片

    国庆不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

    至少我作为一个没玩过的人来说确实是很牛逼了~

    至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

    于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

    正文

    (1)《我是世界》游戏规则。

    移动—前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

    选择建筑材料—砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

    ESC退出程序。

    (2)主要程序代码。

    '''
    主题:
    我的世界1.0版本
    '''
    from __future__ import division
     
    import sys
    import math
    import random
    import time
     
    from collections import deque
    from pyglet import image
    from pyglet.gl import *
    from pyglet.graphics import TextureGroup
    from pyglet.window import key, mouse
     
    TICKS_PER_SEC = 60
     
    # Size of sectors used to ease block loading.
    SECTOR_SIZE = 16
     
    WALKING_SPEED = 5
    FLYING_SPEED = 15
     
    GRAVITY = 20.0
    MAX_JUMP_HEIGHT = 1.0 # About the height of a block.
    # To derive the formula for calculating jump speed, first solve
    #    v_t = v_0 + a * t
    # for the time at which you achieve maximum height, where a is the acceleration
    # due to gravity and v_t = 0. This gives:
    #    t = - v_0 / a
    # Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
    #    s = s_0 + v_0 * t + (a * t^2) / 2
    JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
    TERMINAL_VELOCITY = 50
     
    PLAYER_HEIGHT = 2
     
    if sys.version_info[0] >= 3:
        xrange = range
     
    def cube_vertices(x, y, z, n):
        """ Return the vertices of the cube at position x, y, z with size 2*n.
        """
        return [
            x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top
            x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom
            x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left
            x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right
            x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front
            x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back
        ]
     
     
    def tex_coord(x, y, n=4):
        """ Return the bounding vertices of the texture square.
        """
        m = 1.0 / n
        dx = x * m
        dy = y * m
        return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m
     
     
    def tex_coords(top, bottom, side):
        """ Return a list of the texture squares for the top, bottom and side.
        """
        top = tex_coord(*top)
        bottom = tex_coord(*bottom)
        side = tex_coord(*side)
        result = []
        result.extend(top)
        result.extend(bottom)
        result.extend(side * 4)
        return result
     
     
    TEXTURE_PATH = 'texture.png'
     
    GRASS = tex_coords((1, 0), (0, 1), (0, 0))
    SAND = tex_coords((1, 1), (1, 1), (1, 1))
    BRICK = tex_coords((2, 0), (2, 0), (2, 0))
    STONE = tex_coords((2, 1), (2, 1), (2, 1))
     
    FACES = [
        ( 0, 1, 0),
        ( 0,-1, 0),
        (-1, 0, 0),
        ( 1, 0, 0),
        ( 0, 0, 1),
        ( 0, 0,-1),
    ]
     
     
    def normalize(position):
        """ Accepts `position` of arbitrary precision and returns the block
        containing that position.
        Parameters
        ----------
        position : tuple of len 3
        Returns
        -------
        block_position : tuple of ints of len 3
        """
        x, y, z = position
        x, y, z = (int(round(x)), int(round(y)), int(round(z)))
        return (x, y, z)
     
     
    def sectorize(position):
        """ Returns a tuple representing the sector for the given `position`.
        Parameters
        ----------
        position : tuple of len 3
        Returns
        -------
        sector : tuple of len 3
        """
        x, y, z = normalize(position)
        x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
        return (x, 0, z)
     
     
    class Model(object):
     
        def __init__(self):
     
            # A Batch is a collection of vertex lists for batched rendering.
            self.batch = pyglet.graphics.Batch()
     
            # A TextureGroup manages an OpenGL texture.
            self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())
     
            # A mapping from position to the texture of the block at that position.
            # This defines all the blocks that are currently in the world.
            self.world = {}
     
            # Same mapping as `world` but only contains blocks that are shown.
            self.shown = {}
     
            # Mapping from position to a pyglet `VertextList` for all shown blocks.
            self._shown = {}
     
            # Mapping from sector to a list of positions inside that sector.
            self.sectors = {}
     
            # Simple function queue implementation. The queue is populated with
            # _show_block() and _hide_block() calls
            self.queue = deque()
     
            self._initialize()
     
        def _initialize(self):
            """ Initialize the world by placing all the blocks.
            """
            n = 80  # 1/2 width and height of world
            s = 1  # step size
            y = 0  # initial y height
            for x in xrange(-n, n + 1, s):
                for z in xrange(-n, n + 1, s):
                    # create a layer stone an grass everywhere.
                    self.add_block((x, y - 2, z), GRASS, immediate=False)
                    self.add_block((x, y - 3, z), STONE, immediate=False)
                    if x in (-n, n) or z in (-n, n):
                        # create outer walls.
                        for dy in xrange(-2, 3):
                            self.add_block((x, y + dy, z), STONE, immediate=False)
     
            # generate the hills randomly
            o = n - 10
            for _ in xrange(120):
                a = random.randint(-o, o)  # x position of the hill
                b = random.randint(-o, o)  # z position of the hill
                c = -1  # base of the hill
                h = random.randint(1, 6)  # height of the hill
                s = random.randint(4, 8)  # 2 * s is the side length of the hill
                d = 1  # how quickly to taper off the hills
                t = random.choice([GRASS, SAND, BRICK])
                for y in xrange(c, c + h):
                    for x in xrange(a - s, a + s + 1):
                        for z in xrange(b - s, b + s + 1):
                            if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
                                continue
                            if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
                                continue
                            self.add_block((x, y, z), t, immediate=False)
                    s -= d  # decrement side lenth so hills taper off
     
        def hit_test(self, position, vector, max_distance=8):
            """ Line of sight search from current position. If a block is
            intersected it is returned, along with the block previously in the line
            of sight. If no block is found, return None, None.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position to check visibility from.
            vector : tuple of len 3
                The line of sight vector.
            max_distance : int
                How many blocks away to search for a hit.
            """
            m = 8
            x, y, z = position
            dx, dy, dz = vector
            previous = None
            for _ in xrange(max_distance * m):
                key = normalize((x, y, z))
                if key != previous and key in self.world:
                    return key, previous
                previous = key
                x, y, z = x + dx / m, y + dy / m, z + dz / m
            return None, None
     
        def exposed(self, position):
            """ Returns False is given `position` is surrounded on all 6 sides by
            blocks, True otherwise.
            """
            x, y, z = position
            for dx, dy, dz in FACES:
                if (x + dx, y + dy, z + dz) not in self.world:
                    return True
            return False
     
        def add_block(self, position, texture, immediate=True):
            """ Add a block with the given `texture` and `position` to the world.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position of the block to add.
            texture : list of len 3
                The coordinates of the texture squares. Use `tex_coords()` to
                generate.
            immediate : bool
                Whether or not to draw the block immediately.
            """
            if position in self.world:
                self.remove_block(position, immediate)
            self.world[position] = texture
            self.sectors.setdefault(sectorize(position), []).append(position)
            if immediate:
                if self.exposed(position):
                    self.show_block(position)
                self.check_neighbors(position)
     
        def remove_block(self, position, immediate=True):
            """ Remove the block at the given `position`.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position of the block to remove.
            immediate : bool
                Whether or not to immediately remove block from canvas.
            """
            del self.world[position]
            self.sectors[sectorize(position)].remove(position)
            if immediate:
                if position in self.shown:
                    self.hide_block(position)
                self.check_neighbors(position)
     
        def check_neighbors(self, position):
            """ Check all blocks surrounding `position` and ensure their visual
            state is current. This means hiding blocks that are not exposed and
            ensuring that all exposed blocks are shown. Usually used after a block
            is added or removed.
            """
            x, y, z = position
            for dx, dy, dz in FACES:
                key = (x + dx, y + dy, z + dz)
                if key not in self.world:
                    continue
                if self.exposed(key):
                    if key not in self.shown:
                        self.show_block(key)
                else:
                    if key in self.shown:
                        self.hide_block(key)
     
        def show_block(self, position, immediate=True):
            """ Show the block at the given `position`. This method assumes the
            block has already been added with add_block()
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position of the block to show.
            immediate : bool
                Whether or not to show the block immediately.
            """
            texture = self.world[position]
            self.shown[position] = texture
            if immediate:
                self._show_block(position, texture)
            else:
                self._enqueue(self._show_block, position, texture)
     
        def _show_block(self, position, texture):
            """ Private implementation of the `show_block()` method.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position of the block to show.
            texture : list of len 3
                The coordinates of the texture squares. Use `tex_coords()` to
                generate.
            """
            x, y, z = position
            vertex_data = cube_vertices(x, y, z, 0.5)
            texture_data = list(texture)
            # create vertex list
            # FIXME Maybe `add_indexed()` should be used instead
            self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
                ('v3f/static', vertex_data),
                ('t2f/static', texture_data))
     
        def hide_block(self, position, immediate=True):
            """ Hide the block at the given `position`. Hiding does not remove the
            block from the world.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position of the block to hide.
            immediate : bool
                Whether or not to immediately remove the block from the canvas.
            """
            self.shown.pop(position)
            if immediate:
                self._hide_block(position)
            else:
                self._enqueue(self._hide_block, position)
     
        def _hide_block(self, position):
            """ Private implementation of the 'hide_block()` method.
            """
            self._shown.pop(position).delete()
     
        def show_sector(self, sector):
            """ Ensure all blocks in the given sector that should be shown are
            drawn to the canvas.
            """
            for position in self.sectors.get(sector, []):
                if position not in self.shown and self.exposed(position):
                    self.show_block(position, False)
     
        def hide_sector(self, sector):
            """ Ensure all blocks in the given sector that should be hidden are
            removed from the canvas.
            """
            for position in self.sectors.get(sector, []):
                if position in self.shown:
                    self.hide_block(position, False)
     
        def change_sectors(self, before, after):
            """ Move from sector `before` to sector `after`. A sector is a
            contiguous x, y sub-region of world. Sectors are used to speed up
            world rendering.
            """
            before_set = set()
            after_set = set()
            pad = 4
            for dx in xrange(-pad, pad + 1):
                for dy in [0]:  # xrange(-pad, pad + 1):
                    for dz in xrange(-pad, pad + 1):
                        if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
                            continue
                        if before:
                            x, y, z = before
                            before_set.add((x + dx, y + dy, z + dz))
                        if after:
                            x, y, z = after
                            after_set.add((x + dx, y + dy, z + dz))
            show = after_set - before_set
            hide = before_set - after_set
            for sector in show:
                self.show_sector(sector)
            for sector in hide:
                self.hide_sector(sector)
     
        def _enqueue(self, func, *args):
            """ Add `func` to the internal queue.
            """
            self.queue.append((func, args))
     
        def _dequeue(self):
            """ Pop the top function from the internal queue and call it.
            """
            func, args = self.queue.popleft()
            func(*args)
     
        def process_queue(self):
            """ Process the entire queue while taking periodic breaks. This allows
            the game loop to run smoothly. The queue contains calls to
            _show_block() and _hide_block() so this method should be called if
            add_block() or remove_block() was called with immediate=False
            """
            start = time.clock()
            while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:
                self._dequeue()
     
        def process_entire_queue(self):
            """ Process the entire queue with no breaks.
            """
            while self.queue:
                self._dequeue()
     
     
    class Window(pyglet.window.Window):
     
        def __init__(self, *args, **kwargs):
            super(Window, self).__init__(*args, **kwargs)
     
            # Whether or not the window exclusively captures the mouse.
            self.exclusive = False
     
            # When flying gravity has no effect and speed is increased.
            self.flying = False
     
            # Strafing is moving lateral to the direction you are facing,
            # e.g. moving to the left or right while continuing to face forward.
            #
            # First element is -1 when moving forward, 1 when moving back, and 0
            # otherwise. The second element is -1 when moving left, 1 when moving
            # right, and 0 otherwise.
            self.strafe = [0, 0]
     
            # Current (x, y, z) position in the world, specified with floats. Note
            # that, perhaps unlike in math class, the y-axis is the vertical axis.
            self.position = (0, 0, 0)
     
            # First element is rotation of the player in the x-z plane (ground
            # plane) measured from the z-axis down. The second is the rotation
            # angle from the ground plane up. Rotation is in degrees.
            #
            # The vertical plane rotation ranges from -90 (looking straight down) to
            # 90 (looking straight up). The horizontal rotation range is unbounded.
            self.rotation = (0, 0)
     
            # Which sector the player is currently in.
            self.sector = None
     
            # The crosshairs at the center of the screen.
            self.reticle = None
     
            # Velocity in the y (upward) direction.
            self.dy = 0
     
            # A list of blocks the player can place. Hit num keys to cycle.
            self.inventory = [BRICK, GRASS, SAND]
     
            # The current block the user can place. Hit num keys to cycle.
            self.block = self.inventory[0]
     
            # Convenience list of num keys.
            self.num_keys = [
                key._1, key._2, key._3, key._4, key._5,
                key._6, key._7, key._8, key._9, key._0]
     
            # Instance of the model that handles the world.
            self.model = Model()
     
            # The label that is displayed in the top left of the canvas.
            self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
                x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
                color=(0, 0, 0, 255))
     
            # This call schedules the `update()` method to be called
            # TICKS_PER_SEC. This is the main game event loop.
            pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)
     
        def set_exclusive_mouse(self, exclusive):
            """ If `exclusive` is True, the game will capture the mouse, if False
            the game will ignore the mouse.
            """
            super(Window, self).set_exclusive_mouse(exclusive)
            self.exclusive = exclusive
     
        def get_sight_vector(self):
            """ Returns the current line of sight vector indicating the direction
            the player is looking.
            """
            x, y = self.rotation
            # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
            # is 1 when looking ahead parallel to the ground and 0 when looking
            # straight up or down.
            m = math.cos(math.radians(y))
            # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
            # looking straight up.
            dy = math.sin(math.radians(y))
            dx = math.cos(math.radians(x - 90)) * m
            dz = math.sin(math.radians(x - 90)) * m
            return (dx, dy, dz)
     
        def get_motion_vector(self):
            """ Returns the current motion vector indicating the velocity of the
            player.
            Returns
            -------
            vector : tuple of len 3
                Tuple containing the velocity in x, y, and z respectively.
            """
            if any(self.strafe):
                x, y = self.rotation
                strafe = math.degrees(math.atan2(*self.strafe))
                y_angle = math.radians(y)
                x_angle = math.radians(x + strafe)
                if self.flying:
                    m = math.cos(y_angle)
                    dy = math.sin(y_angle)
                    if self.strafe[1]:
                        # Moving left or right.
                        dy = 0.0
                        m = 1
                    if self.strafe[0] > 0:
                        # Moving backwards.
                        dy *= -1
                    # When you are flying up or down, you have less left and right
                    # motion.
                    dx = math.cos(x_angle) * m
                    dz = math.sin(x_angle) * m
                else:
                    dy = 0.0
                    dx = math.cos(x_angle)
                    dz = math.sin(x_angle)
            else:
                dy = 0.0
                dx = 0.0
                dz = 0.0
            return (dx, dy, dz)
     
        def update(self, dt):
            """ This method is scheduled to be called repeatedly by the pyglet
            clock.
            Parameters
            ----------
            dt : float
                The change in time since the last call.
            """
            self.model.process_queue()
            sector = sectorize(self.position)
            if sector != self.sector:
                self.model.change_sectors(self.sector, sector)
                if self.sector is None:
                    self.model.process_entire_queue()
                self.sector = sector
            m = 8
            dt = min(dt, 0.2)
            for _ in xrange(m):
                self._update(dt / m)
     
        def _update(self, dt):
            """ Private implementation of the `update()` method. This is where most
            of the motion logic lives, along with gravity and collision detection.
            Parameters
            ----------
            dt : float
                The change in time since the last call.
            """
            # walking
            speed = FLYING_SPEED if self.flying else WALKING_SPEED
            d = dt * speed # distance covered this tick.
            dx, dy, dz = self.get_motion_vector()
            # New position in space, before accounting for gravity.
            dx, dy, dz = dx * d, dy * d, dz * d
            # gravity
            if not self.flying:
                # Update your vertical speed: if you are falling, speed up until you
                # hit terminal velocity; if you are jumping, slow down until you
                # start falling.
                self.dy -= dt * GRAVITY
                self.dy = max(self.dy, -TERMINAL_VELOCITY)
                dy += self.dy * dt
            # collisions
            x, y, z = self.position
            x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
            self.position = (x, y, z)
     
        def collide(self, position, height):
            """ Checks to see if the player at the given `position` and `height`
            is colliding with any blocks in the world.
            Parameters
            ----------
            position : tuple of len 3
                The (x, y, z) position to check for collisions at.
            height : int or float
                The height of the player.
            Returns
            -------
            position : tuple of len 3
                The new position of the player taking into account collisions.
            """
            # How much overlap with a dimension of a surrounding block you need to
            # have to count as a collision. If 0, touching terrain at all counts as
            # a collision. If .49, you sink into the ground, as if walking through
            # tall grass. If >= .5, you'll fall through the ground.
            pad = 0.25
            p = list(position)
            np = normalize(position)
            for face in FACES:  # check all surrounding blocks
                for i in xrange(3):  # check each dimension independently
                    if not face[i]:
                        continue
                    # How much overlap you have with this dimension.
                    d = (p[i] - np[i]) * face[i]
                    if d < pad:
                        continue
                    for dy in xrange(height):  # check each height
                        op = list(np)
                        op[1] -= dy
                        op[i] += face[i]
                        if tuple(op) not in self.model.world:
                            continue
                        p[i] -= (d - pad) * face[i]
                        if face == (0, -1, 0) or face == (0, 1, 0):
                            # You are colliding with the ground or ceiling, so stop
                            # falling / rising.
                            self.dy = 0
                        break
            return tuple(p)
     
        def on_mouse_press(self, x, y, button, modifiers):
            """ Called when a mouse button is pressed. See pyglet docs for button
            amd modifier mappings.
            Parameters
            ----------
            x, y : int
                The coordinates of the mouse click. Always center of the screen if
                the mouse is captured.
            button : int
                Number representing mouse button that was clicked. 1 = left button,
                4 = right button.
            modifiers : int
                Number representing any modifying keys that were pressed when the
                mouse button was clicked.
            """
            if self.exclusive:
                vector = self.get_sight_vector()
                block, previous = self.model.hit_test(self.position, vector)
                if (button == mouse.RIGHT) or \
                        ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
                    # ON OSX, control + left click = right click.
                    if previous:
                        self.model.add_block(previous, self.block)
                elif button == pyglet.window.mouse.LEFT and block:
                    texture = self.model.world[block]
                    if texture != STONE:
                        self.model.remove_block(block)
            else:
                self.set_exclusive_mouse(True)
     
        def on_mouse_motion(self, x, y, dx, dy):
            """ Called when the player moves the mouse.
            Parameters
            ----------
            x, y : int
                The coordinates of the mouse click. Always center of the screen if
                the mouse is captured.
            dx, dy : float
                The movement of the mouse.
            """
            if self.exclusive:
                m = 0.15
                x, y = self.rotation
                x, y = x + dx * m, y + dy * m
                y = max(-90, min(90, y))
                self.rotation = (x, y)
     
        def on_key_press(self, symbol, modifiers):
            """ Called when the player presses a key. See pyglet docs for key
            mappings.
            Parameters
            ----------
            symbol : int
                Number representing the key that was pressed.
            modifiers : int
                Number representing any modifying keys that were pressed.
            """
            if symbol == key.W:
                self.strafe[0] -= 1
            elif symbol == key.S:
                self.strafe[0] += 1
            elif symbol == key.A:
                self.strafe[1] -= 1
            elif symbol == key.D:
                self.strafe[1] += 1
            elif symbol == key.SPACE:
                if self.dy == 0:
                    self.dy = JUMP_SPEED
            elif symbol == key.ESCAPE:
                self.set_exclusive_mouse(False)
            elif symbol == key.TAB:
                self.flying = not self.flying
            elif symbol in self.num_keys:
                index = (symbol - self.num_keys[0]) % len(self.inventory)
                self.block = self.inventory[index]
     
        def on_key_release(self, symbol, modifiers):
            """ Called when the player releases a key. See pyglet docs for key
            mappings.
            Parameters
            ----------
            symbol : int
                Number representing the key that was pressed.
            modifiers : int
                Number representing any modifying keys that were pressed.
            """
            if symbol == key.W:
                self.strafe[0] += 1
            elif symbol == key.S:
                self.strafe[0] -= 1
            elif symbol == key.A:
                self.strafe[1] += 1
            elif symbol == key.D:
                self.strafe[1] -= 1
     
        def on_resize(self, width, height):
            """ Called when the window is resized to a new `width` and `height`.
            """
            # label
            self.label.y = height - 10
            # reticle
            if self.reticle:
                self.reticle.delete()
            x, y = self.width // 2, self.height // 2
            n = 10
            self.reticle = pyglet.graphics.vertex_list(4,
                ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
            )
     
        def set_2d(self):
            """ Configure OpenGL to draw in 2d.
            """
            width, height = self.get_size()
            glDisable(GL_DEPTH_TEST)
            viewport = self.get_viewport_size()
            glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
            glMatrixMode(GL_PROJECTION)
            glLoadIdentity()
            glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
            glMatrixMode(GL_MODELVIEW)
            glLoadIdentity()
     
        def set_3d(self):
            """ Configure OpenGL to draw in 3d.
            """
            width, height = self.get_size()
            glEnable(GL_DEPTH_TEST)
            viewport = self.get_viewport_size()
            glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
            glMatrixMode(GL_PROJECTION)
            glLoadIdentity()
            gluPerspective(65.0, width / float(height), 0.1, 60.0)
            glMatrixMode(GL_MODELVIEW)
            glLoadIdentity()
            x, y = self.rotation
            glRotatef(x, 0, 1, 0)
            glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
            x, y, z = self.position
            glTranslatef(-x, -y, -z)
     
        def on_draw(self):
            """ Called by pyglet to draw the canvas.
            """
            self.clear()
            self.set_3d()
            glColor3d(1, 1, 1)
            self.model.batch.draw()
            self.draw_focused_block()
            self.set_2d()
            self.draw_label()
            self.draw_reticle()
     
        def draw_focused_block(self):
            """ Draw black edges around the block that is currently under the
            crosshairs.
            """
            vector = self.get_sight_vector()
            block = self.model.hit_test(self.position, vector)[0]
            if block:
                x, y, z = block
                vertex_data = cube_vertices(x, y, z, 0.51)
                glColor3d(0, 0, 0)
                glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
                pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
                glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)
     
        def draw_label(self):
            """ Draw the label in the top left of the screen.
            """
            x, y, z = self.position
            self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
                pyglet.clock.get_fps(), x, y, z,
                len(self.model._shown), len(self.model.world))
            self.label.draw()
     
        def draw_reticle(self):
            """ Draw the crosshairs in the center of the screen.
            """
            glColor3d(0, 0, 0)
            self.reticle.draw(GL_LINES)
     
     
    def setup_fog():
        """ Configure the OpenGL fog properties.
        """
        # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
        # post-texturing color."
        glEnable(GL_FOG)
        # Set the fog color.
        glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
        # Say we have no preference between rendering speed and quality.
        glHint(GL_FOG_HINT, GL_DONT_CARE)
        # Specify the equation used to compute the blending factor.
        glFogi(GL_FOG_MODE, GL_LINEAR)
        # How close and far away fog starts and ends. The closer the start and end,
        # the denser the fog in the fog range.
        glFogf(GL_FOG_START, 20.0)
        glFogf(GL_FOG_END, 60.0)
     
     
    def setup():
        """ Basic OpenGL configuration.
        """
        # Set the color of "clear", i.e. the sky, in rgba.
        glClearColor(0.5, 0.69, 1.0, 1)
        # Enable culling (not rendering) of back-facing facets -- facets that aren't
        # visible to you.
        glEnable(GL_CULL_FACE)
        # Set the texture minification/magnification function to GL_NEAREST (nearest
        # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
        # "is generally faster than GL_LINEAR, but it can produce textured 图片
        # with sharper edges because the transition between texture elements is not
        # as smooth."
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
        glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
        setup_fog()
     
     
    def main():
        window = Window(width=1800, height=1600, caption='Pyglet', resizable=True)
        # Hide the mouse cursor and prevent the mouse from leaving the window.
        window.set_exclusive_mouse(True)
        setup()
        pyglet.app.run()
     
     
    if __name__ == '__main__':
        main()

    (3)效果图如下。

    正常的截图:

    飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

    ​总结

    总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

    等一个大佬优化这款Python的我的世界!

    你们的支持是我最大的动力!!mua 欢迎大家阅读往期的文章哦~

    到此这篇关于Python著名游戏实战之方块连接 我的世界的文章就介绍到这了,更多相关Python 我的世界内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

    【文章出处:http://www.1234xp.com/tbm.html转载请保留出处】