PyTorch一小时掌握之迁移学习篇

编辑: admin 分类: python 发布时间: 2021-12-03 来源:互联网
目录
  • 概述
  • 为什么使用迁移学习
    • 更好的结果
    • 节省时间
  • 加载模型
    • ResNet152
      • 冻层实现
      • 模型初始化
      • 获取需更新参数
      • 训练模型
      • 获取数据
    • 完整代码

      概述

      迁移学习 (Transfer Learning) 是把已学训练好的模型参数用作新训练模型的起始参数. 迁移学习是深度学习中非常重要和常用的一个策略.

      在这里插入图片描述

      为什么使用迁移学习

      更好的结果

      迁移学习 (Transfer Learning) 可以帮助我们得到更好的结果.

      当我们手上的数据比较少的时候, 训练非常容易造成过拟合的现象. 使用迁移学习可以帮助我们通过更少的训练数据达到更好的效果. 使得模型的泛化能力更强, 训练过程更稳定.

      在这里插入图片描述

      节省时间

      迁移学习 (Transfer Learning) 可以帮助我们节省时间.

      通过迁徙学习, 我们站在了巨人的肩膀上. 利用前人花大量时间训练好的参数, 能帮助我们在模型的训练上节省大把的时间.

      在这里插入图片描述

      加载模型

      首先我们需要加载模型, 并指定层数. 常用的模型有:

      • VGG
      • ResNet
      • SqueezeNet
      • DenseNet
      • Inception
      • GoogLeNet
      • ShuffleNet
      • MobileNet

      官网 API

      ResNet152

      我们将使用 ResNet 152 和 CIFAR 100 来举例.

      冻层实现

      在这里插入图片描述

      def set_parameter_requires_grad(model, feature_extracting):
          """
          是否保留梯度, 实现冻层
          :param model: 模型
          :param feature_extracting: 是否冻层
          :return: 无返回值
          """
          if feature_extracting:  # 如果冻层
              for param in model.parameters():  # 遍历每个权重参数
                  param.requires_grad = False  # 保留梯度为False
      

      模型初始化

      在这里插入图片描述

      def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
          """
          初始化模型
          :param model_name: 模型名字
          :param num_classes: 类别数
          :param feature_exact: 是否冻层
          :param use_pretrained: 是否下载模型
          :return: 返回模型,
          """
      
          model_ft = None
      
          if model_name == "resnet":
              """Resnet152"""
      
              # 加载模型
              model_ft = models.resnet152(pretrained=use_pretrained)  # 下载参数
              set_parameter_requires_grad(model_ft, feature_exact)  # 冻层
      
              # 修改全连接层
              num_features = model_ft.fc.in_features
              model_ft.fc = torch.nn.Sequential(
                  torch.nn.Linear(num_features, num_classes),
                  torch.nn.LogSoftmax(dim=1)
              )
      
          # 返回初始化好的模型
          return model_ft
      

      获取需更新参数

      def parameter_to_update(model):
          """
          获取需要更新的参数
          :param model: 模型
          :return: 需要更新的参数列表
          """
      
          print("Params to learn")
          param_array = model.parameters()
      
          if feature_exact:
              param_array = []
              for name, param, in model.named_parameters():
                  if param.requires_grad == True:
                      param_array.append(param)
                      print("\t", name)
          else:
              for name, param, in model.named_parameters():
                  if param.requires_grad == True:
                      print("\t", name)
      
          return param_array
      

      训练模型

      def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
          # 获取起始时间
          since = time.time()
      
          # 初始化参数
          best_acc = 0
          val_acc_history = []
          train_acc_history = []
          train_losses = []
          valid_losses = []
          LRs = [optimizer.param_groups[0]["lr"]]
          best_model_weights = copy.deepcopy(model.state_dict())
      
          for epoch in range(num_epochs):
              print("Epoch {}/{}".format(epoch, num_epochs - 1))
              print("-" * 10)
      
              # 训练和验证
              for phase in ["train", "valid"]:
                  if phase == "train":
                      model.train()  # 训练
                  else:
                      model.eval()  # 验证
      
                  running_loss = 0.0
                  running_corrects = 0
      
                  # 遍历数据
                  for inputs, labels in dataloaders[phase]:
                      inputs = inputs.to(device)
                      labels = labels.to(device)
      
                      # 梯度清零
                      optimizer.zero_grad()
      
                      # 只有训练的时候计算和更新梯度
                      with torch.set_grad_enabled(phase == "train"):
                          outputs = model(inputs)
                          _, preds = torch.max(outputs, 1)
      
                          # 计算损失
                          loss = criterion(outputs, labels)
      
                          # 训练阶段更新权重
                          if phase == "train":
                              loss.backward()
                              optimizer.step()
      
                      # 计算损失
                      running_loss += loss.item() * inputs.size(0)
                      running_corrects += torch.sum(preds == labels.data)
      
                  epoch_loss = running_loss / len(dataloaders[phase].dataset)
                  epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
      
                  time_eplased = time.time() - since
                  print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
                  print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))
      
                  # 得到最好的模型
                  if phase == "valid" and epoch_acc > best_acc:
                      best_acc = epoch_acc
                      best_model_weights = copy.deepcopy(model.state_dict())
                      state = {
                          "state_dict": model.state_dict(),
                          "best_acc": best_acc,
                          "optimizer": optimizer.state_dict(),
                      }
                      torch.save(state, filename)
                  if phase == "valid":
                      val_acc_history.append(epoch_acc)
                      valid_losses.append(epoch_loss)
                      scheduler.step(epoch_loss)
                  if phase == "train":
                      train_acc_history.append(epoch_acc)
                      train_losses.append(epoch_loss)
      
              print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
              LRs.append(optimizer.param_groups[0]["lr"])
              print()
      
          time_eplased = time.time() - since
          print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
          print("Best val Acc: {:4f}".format(best_acc))
      
          # 训练完后用最好的一次当做模型最终的结果
          model.load_state_dict(best_model_weights)
      
          # 返回
          return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
      

      获取数据

      def get_data():
          """获取数据"""
      
          # 获取测试集
          train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                                transform=torchvision.transforms.Compose([
                                                    torchvision.transforms.ToTensor(),  # 转换成张量
                                                    torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                                ]))
          train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集
      
          # 获取测试集
          test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                               transform=torchvision.transforms.Compose([
                                                   torchvision.transforms.ToTensor(),  # 转换成张量
                                                   torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                               ]))
          test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练
      
          data_loader = {"train": train_loader, "valid": test_loader}
      
          # 返回分割好的训练集和测试集
          return data_loader
      

      完整代码

      在这里插入图片描述

      完整代码:

      import copy
      import torch
      from torch.utils.data import DataLoader
      import time
      from torchsummary import summary
      import torchvision
      import torchvision.models as models
      
      
      def set_parameter_requires_grad(model, feature_extracting):
          """
          是否保留梯度, 实现冻层
          :param model: 模型
          :param feature_extracting: 是否冻层
          :return: 无返回值
          """
          if feature_extracting:  # 如果冻层
              for param in model.parameters():  # 遍历每个权重参数
                  param.requires_grad = False  # 保留梯度为False
      
      
      def initialize_model(model_name, num_classes, feature_exact, use_pretrained=True):
          """
          初始化模型
          :param model_name: 模型名字
          :param num_classes: 类别数
          :param feature_exact: 是否冻层
          :param use_pretrained: 是否下载模型
          :return: 返回模型,
          """
      
          model_ft = None
      
          if model_name == "resnet":
              """Resnet152"""
      
              # 加载模型
              model_ft = models.resnet152(pretrained=use_pretrained)  # 下载参数
              set_parameter_requires_grad(model_ft, feature_exact)  # 冻层
      
              # 修改全连接层
              num_features = model_ft.fc.in_features
              model_ft.fc = torch.nn.Sequential(
                  torch.nn.Linear(num_features, num_classes),
                  torch.nn.LogSoftmax(dim=1)
              )
      
          # 返回初始化好的模型
          return model_ft
      
      
      def parameter_to_update(model):
          """
          获取需要更新的参数
          :param model: 模型
          :return: 需要更新的参数列表
          """
      
          print("Params to learn")
          param_array = model.parameters()
      
          if feature_exact:
              param_array = []
              for name, param, in model.named_parameters():
                  if param.requires_grad == True:
                      param_array.append(param)
                      print("\t", name)
          else:
              for name, param, in model.named_parameters():
                  if param.requires_grad == True:
                      print("\t", name)
      
          return param_array
      
      
      def train_model(model, dataloaders, citerion, optimizer, filename, num_epochs=25):
          # 获取起始时间
          since = time.time()
      
          # 初始化参数
          best_acc = 0
          val_acc_history = []
          train_acc_history = []
          train_losses = []
          valid_losses = []
          LRs = [optimizer.param_groups[0]["lr"]]
          best_model_weights = copy.deepcopy(model.state_dict())
      
          for epoch in range(num_epochs):
              print("Epoch {}/{}".format(epoch, num_epochs - 1))
              print("-" * 10)
      
              # 训练和验证
              for phase in ["train", "valid"]:
                  if phase == "train":
                      model.train()  # 训练
                  else:
                      model.eval()  # 验证
      
                  running_loss = 0.0
                  running_corrects = 0
      
                  # 遍历数据
                  for inputs, labels in dataloaders[phase]:
                      inputs = inputs.to(device)
                      labels = labels.to(device)
      
                      # 梯度清零
                      optimizer.zero_grad()
      
                      # 只有训练的时候计算和更新梯度
                      with torch.set_grad_enabled(phase == "train"):
                          outputs = model(inputs)
                          _, preds = torch.max(outputs, 1)
      
                          # 计算损失
                          loss = criterion(outputs, labels)
      
                          # 训练阶段更新权重
                          if phase == "train":
                              loss.backward()
                              optimizer.step()
      
                      # 计算损失
                      running_loss += loss.item() * inputs.size(0)
                      running_corrects += torch.sum(preds == labels.data)
      
                  epoch_loss = running_loss / len(dataloaders[phase].dataset)
                  epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
      
                  time_eplased = time.time() - since
                  print("Time elapsed {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
                  print("{} Loss: {:.4f} Acc: {:.4f}".format(phase, epoch_loss, epoch_acc))
      
                  # 得到最好的模型
                  if phase == "valid" and epoch_acc > best_acc:
                      best_acc = epoch_acc
                      best_model_weights = copy.deepcopy(model.state_dict())
                      state = {
                          "state_dict": model.state_dict(),
                          "best_acc": best_acc,
                          "optimizer": optimizer.state_dict(),
                      }
                      torch.save(state, filename)
                  if phase == "valid":
                      val_acc_history.append(epoch_acc)
                      valid_losses.append(epoch_loss)
                      scheduler.step(epoch_loss)
                  if phase == "train":
                      train_acc_history.append(epoch_acc)
                      train_losses.append(epoch_loss)
      
              print("Optimizer learning rate: {:.7f}".format(optimizer.param_groups[0]["lr"]))
              LRs.append(optimizer.param_groups[0]["lr"])
              print()
      
          time_eplased = time.time() - since
          print("Training complete in {:.0f}m {:.0f}s".format(time_eplased // 60, time_eplased % 60))
          print("Best val Acc: {:4f}".format(best_acc))
      
          # 训练完后用最好的一次当做模型最终的结果
          model.load_state_dict(best_model_weights)
      
          # 返回
          return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs
      
      
      def get_data():
          """获取数据"""
      
          # 获取测试集
          train = torchvision.datasets.CIFAR100(root="./mnt", train=True, download=True,
                                                transform=torchvision.transforms.Compose([
                                                    torchvision.transforms.ToTensor(),  # 转换成张量
                                                    torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                                ]))
          train_loader = DataLoader(train, batch_size=batch_size)  # 分割测试集
      
          # 获取测试集
          test = torchvision.datasets.CIFAR100(root="./mnt", train=False, download=True,
                                               transform=torchvision.transforms.Compose([
                                                   torchvision.transforms.ToTensor(),  # 转换成张量
                                                   torchvision.transforms.Normalize((0.1307,), (0.3081,))  # 标准化
                                               ]))
          test_loader = DataLoader(test, batch_size=batch_size)  # 分割训练
      
          data_loader = {"train": train_loader, "valid": test_loader}
      
          # 返回分割好的训练集和测试集
          return data_loader
      
      
      # 超参数
      filename = "checkpoint.pth"  # 模型保存
      feature_exact = True  # 冻层
      num_classes = 100  # 输出的类别数
      batch_size = 1024  # 一次训练的样本数目
      iteration_num = 10  # 迭代次数
      
      # 获取模型
      resnet152 = initialize_model(
          model_name="resnet",
          num_classes=num_classes,
          feature_exact=feature_exact,
          use_pretrained=True
      )
      
      # 是否使用GPU训练
      use_cuda = torch.cuda.is_available()
      device = torch.device("cuda" if use_cuda else "cpu")
      if use_cuda: resnet152.cuda()  # GPU 计算
      print("是否使用 GPU 加速:", use_cuda)
      
      # 输出网络结构
      print(summary(resnet152, (3, 32, 32)))
      
      # 训练参数
      params_to_update = parameter_to_update(resnet152)
      
      # 优化器
      optimizer = torch.optim.Adam(params_to_update, lr=0.01)
      scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)  # 学习率每10个epoch衰减到原来的1/10
      criterion = torch.nn.NLLLoss()
      
      if __name__ == "__main__":
          data_loader = get_data()
          resnet152, val_acc_history, train_acc_history, valid_losses, train_losses, LRs = train_model(
              model=resnet152,
              dataloaders=data_loader,
              citerion=criterion,
              optimizer=optimizer,
              num_epochs=iteration_num,
              filename=filename
          )
      

      输出结果:

      是否使用 GPU 加速: True
      ----------------------------------------------------------------
      Layer (type) Output Shape Param #
      ================================================================
      Conv2d-1 [-1, 64, 16, 16] 9,408
      BatchNorm2d-2 [-1, 64, 16, 16] 128
      ReLU-3 [-1, 64, 16, 16] 0
      MaxPool2d-4 [-1, 64, 8, 8] 0
      Conv2d-5 [-1, 64, 8, 8] 4,096
      BatchNorm2d-6 [-1, 64, 8, 8] 128
      ReLU-7 [-1, 64, 8, 8] 0
      Conv2d-8 [-1, 64, 8, 8] 36,864
      BatchNorm2d-9 [-1, 64, 8, 8] 128
      ReLU-10 [-1, 64, 8, 8] 0
      Conv2d-11 [-1, 256, 8, 8] 16,384
      BatchNorm2d-12 [-1, 256, 8, 8] 512
      Conv2d-13 [-1, 256, 8, 8] 16,384
      BatchNorm2d-14 [-1, 256, 8, 8] 512
      ReLU-15 [-1, 256, 8, 8] 0
      Bottleneck-16 [-1, 256, 8, 8] 0
      Conv2d-17 [-1, 64, 8, 8] 16,384
      BatchNorm2d-18 [-1, 64, 8, 8] 128
      ReLU-19 [-1, 64, 8, 8] 0
      Conv2d-20 [-1, 64, 8, 8] 36,864
      BatchNorm2d-21 [-1, 64, 8, 8] 128
      ReLU-22 [-1, 64, 8, 8] 0
      Conv2d-23 [-1, 256, 8, 8] 16,384
      BatchNorm2d-24 [-1, 256, 8, 8] 512
      ReLU-25 [-1, 256, 8, 8] 0
      Bottleneck-26 [-1, 256, 8, 8] 0
      Conv2d-27 [-1, 64, 8, 8] 16,384
      BatchNorm2d-28 [-1, 64, 8, 8] 128
      ReLU-29 [-1, 64, 8, 8] 0
      Conv2d-30 [-1, 64, 8, 8] 36,864
      BatchNorm2d-31 [-1, 64, 8, 8] 128
      ReLU-32 [-1, 64, 8, 8] 0
      Conv2d-33 [-1, 256, 8, 8] 16,384
      BatchNorm2d-34 [-1, 256, 8, 8] 512
      ReLU-35 [-1, 256, 8, 8] 0
      Bottleneck-36 [-1, 256, 8, 8] 0
      Conv2d-37 [-1, 128, 8, 8] 32,768
      BatchNorm2d-38 [-1, 128, 8, 8] 256
      ReLU-39 [-1, 128, 8, 8] 0
      Conv2d-40 [-1, 128, 4, 4] 147,456
      BatchNorm2d-41 [-1, 128, 4, 4] 256
      ReLU-42 [-1, 128, 4, 4] 0
      Conv2d-43 [-1, 512, 4, 4] 65,536
      BatchNorm2d-44 [-1, 512, 4, 4] 1,024
      Conv2d-45 [-1, 512, 4, 4] 131,072
      BatchNorm2d-46 [-1, 512, 4, 4] 1,024
      ReLU-47 [-1, 512, 4, 4] 0
      Bottleneck-48 [-1, 512, 4, 4] 0
      Conv2d-49 [-1, 128, 4, 4] 65,536
      BatchNorm2d-50 [-1, 128, 4, 4] 256
      ReLU-51 [-1, 128, 4, 4] 0
      Conv2d-52 [-1, 128, 4, 4] 147,456
      BatchNorm2d-53 [-1, 128, 4, 4] 256
      ReLU-54 [-1, 128, 4, 4] 0
      Conv2d-55 [-1, 512, 4, 4] 65,536
      BatchNorm2d-56 [-1, 512, 4, 4] 1,024
      ReLU-57 [-1, 512, 4, 4] 0
      Bottleneck-58 [-1, 512, 4, 4] 0
      Conv2d-59 [-1, 128, 4, 4] 65,536
      BatchNorm2d-60 [-1, 128, 4, 4] 256
      ReLU-61 [-1, 128, 4, 4] 0
      Conv2d-62 [-1, 128, 4, 4] 147,456
      BatchNorm2d-63 [-1, 128, 4, 4] 256
      ReLU-64 [-1, 128, 4, 4] 0
      Conv2d-65 [-1, 512, 4, 4] 65,536
      BatchNorm2d-66 [-1, 512, 4, 4] 1,024
      ReLU-67 [-1, 512, 4, 4] 0
      Bottleneck-68 [-1, 512, 4, 4] 0
      Conv2d-69 [-1, 128, 4, 4] 65,536
      BatchNorm2d-70 [-1, 128, 4, 4] 256
      ReLU-71 [-1, 128, 4, 4] 0
      Conv2d-72 [-1, 128, 4, 4] 147,456
      BatchNorm2d-73 [-1, 128, 4, 4] 256
      ReLU-74 [-1, 128, 4, 4] 0
      Conv2d-75 [-1, 512, 4, 4] 65,536
      BatchNorm2d-76 [-1, 512, 4, 4] 1,024
      ReLU-77 [-1, 512, 4, 4] 0
      Bottleneck-78 [-1, 512, 4, 4] 0
      Conv2d-79 [-1, 128, 4, 4] 65,536
      BatchNorm2d-80 [-1, 128, 4, 4] 256
      ReLU-81 [-1, 128, 4, 4] 0
      Conv2d-82 [-1, 128, 4, 4] 147,456
      BatchNorm2d-83 [-1, 128, 4, 4] 256
      ReLU-84 [-1, 128, 4, 4] 0
      Conv2d-85 [-1, 512, 4, 4] 65,536
      BatchNorm2d-86 [-1, 512, 4, 4] 1,024
      ReLU-87 [-1, 512, 4, 4] 0
      Bottleneck-88 [-1, 512, 4, 4] 0
      Conv2d-89 [-1, 128, 4, 4] 65,536
      BatchNorm2d-90 [-1, 128, 4, 4] 256
      ReLU-91 [-1, 128, 4, 4] 0
      Conv2d-92 [-1, 128, 4, 4] 147,456
      BatchNorm2d-93 [-1, 128, 4, 4] 256
      ReLU-94 [-1, 128, 4, 4] 0
      Conv2d-95 [-1, 512, 4, 4] 65,536
      BatchNorm2d-96 [-1, 512, 4, 4] 1,024
      ReLU-97 [-1, 512, 4, 4] 0
      Bottleneck-98 [-1, 512, 4, 4] 0
      Conv2d-99 [-1, 128, 4, 4] 65,536
      BatchNorm2d-100 [-1, 128, 4, 4] 256
      ReLU-101 [-1, 128, 4, 4] 0
      Conv2d-102 [-1, 128, 4, 4] 147,456
      BatchNorm2d-103 [-1, 128, 4, 4] 256
      ReLU-104 [-1, 128, 4, 4] 0
      Conv2d-105 [-1, 512, 4, 4] 65,536
      BatchNorm2d-106 [-1, 512, 4, 4] 1,024
      ReLU-107 [-1, 512, 4, 4] 0
      Bottleneck-108 [-1, 512, 4, 4] 0
      Conv2d-109 [-1, 128, 4, 4] 65,536
      BatchNorm2d-110 [-1, 128, 4, 4] 256
      ReLU-111 [-1, 128, 4, 4] 0
      Conv2d-112 [-1, 128, 4, 4] 147,456
      BatchNorm2d-113 [-1, 128, 4, 4] 256
      ReLU-114 [-1, 128, 4, 4] 0
      Conv2d-115 [-1, 512, 4, 4] 65,536
      BatchNorm2d-116 [-1, 512, 4, 4] 1,024
      ReLU-117 [-1, 512, 4, 4] 0
      Bottleneck-118 [-1, 512, 4, 4] 0
      Conv2d-119 [-1, 256, 4, 4] 131,072
      BatchNorm2d-120 [-1, 256, 4, 4] 512
      ReLU-121 [-1, 256, 4, 4] 0
      Conv2d-122 [-1, 256, 2, 2] 589,824
      BatchNorm2d-123 [-1, 256, 2, 2] 512
      ReLU-124 [-1, 256, 2, 2] 0
      Conv2d-125 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-126 [-1, 1024, 2, 2] 2,048
      Conv2d-127 [-1, 1024, 2, 2] 524,288
      BatchNorm2d-128 [-1, 1024, 2, 2] 2,048
      ReLU-129 [-1, 1024, 2, 2] 0
      Bottleneck-130 [-1, 1024, 2, 2] 0
      Conv2d-131 [-1, 256, 2, 2] 262,144
      BatchNorm2d-132 [-1, 256, 2, 2] 512
      ReLU-133 [-1, 256, 2, 2] 0
      Conv2d-134 [-1, 256, 2, 2] 589,824
      BatchNorm2d-135 [-1, 256, 2, 2] 512
      ReLU-136 [-1, 256, 2, 2] 0
      Conv2d-137 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-138 [-1, 1024, 2, 2] 2,048
      ReLU-139 [-1, 1024, 2, 2] 0
      Bottleneck-140 [-1, 1024, 2, 2] 0
      Conv2d-141 [-1, 256, 2, 2] 262,144
      BatchNorm2d-142 [-1, 256, 2, 2] 512
      ReLU-143 [-1, 256, 2, 2] 0
      Conv2d-144 [-1, 256, 2, 2] 589,824
      BatchNorm2d-145 [-1, 256, 2, 2] 512
      ReLU-146 [-1, 256, 2, 2] 0
      Conv2d-147 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-148 [-1, 1024, 2, 2] 2,048
      ReLU-149 [-1, 1024, 2, 2] 0
      Bottleneck-150 [-1, 1024, 2, 2] 0
      Conv2d-151 [-1, 256, 2, 2] 262,144
      BatchNorm2d-152 [-1, 256, 2, 2] 512
      ReLU-153 [-1, 256, 2, 2] 0
      Conv2d-154 [-1, 256, 2, 2] 589,824
      BatchNorm2d-155 [-1, 256, 2, 2] 512
      ReLU-156 [-1, 256, 2, 2] 0
      Conv2d-157 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-158 [-1, 1024, 2, 2] 2,048
      ReLU-159 [-1, 1024, 2, 2] 0
      Bottleneck-160 [-1, 1024, 2, 2] 0
      Conv2d-161 [-1, 256, 2, 2] 262,144
      BatchNorm2d-162 [-1, 256, 2, 2] 512
      ReLU-163 [-1, 256, 2, 2] 0
      Conv2d-164 [-1, 256, 2, 2] 589,824
      BatchNorm2d-165 [-1, 256, 2, 2] 512
      ReLU-166 [-1, 256, 2, 2] 0
      Conv2d-167 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-168 [-1, 1024, 2, 2] 2,048
      ReLU-169 [-1, 1024, 2, 2] 0
      Bottleneck-170 [-1, 1024, 2, 2] 0
      Conv2d-171 [-1, 256, 2, 2] 262,144
      BatchNorm2d-172 [-1, 256, 2, 2] 512
      ReLU-173 [-1, 256, 2, 2] 0
      Conv2d-174 [-1, 256, 2, 2] 589,824
      BatchNorm2d-175 [-1, 256, 2, 2] 512
      ReLU-176 [-1, 256, 2, 2] 0
      Conv2d-177 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-178 [-1, 1024, 2, 2] 2,048
      ReLU-179 [-1, 1024, 2, 2] 0
      Bottleneck-180 [-1, 1024, 2, 2] 0
      Conv2d-181 [-1, 256, 2, 2] 262,144
      BatchNorm2d-182 [-1, 256, 2, 2] 512
      ReLU-183 [-1, 256, 2, 2] 0
      Conv2d-184 [-1, 256, 2, 2] 589,824
      BatchNorm2d-185 [-1, 256, 2, 2] 512
      ReLU-186 [-1, 256, 2, 2] 0
      Conv2d-187 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-188 [-1, 1024, 2, 2] 2,048
      ReLU-189 [-1, 1024, 2, 2] 0
      Bottleneck-190 [-1, 1024, 2, 2] 0
      Conv2d-191 [-1, 256, 2, 2] 262,144
      BatchNorm2d-192 [-1, 256, 2, 2] 512
      ReLU-193 [-1, 256, 2, 2] 0
      Conv2d-194 [-1, 256, 2, 2] 589,824
      BatchNorm2d-195 [-1, 256, 2, 2] 512
      ReLU-196 [-1, 256, 2, 2] 0
      Conv2d-197 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-198 [-1, 1024, 2, 2] 2,048
      ReLU-199 [-1, 1024, 2, 2] 0
      Bottleneck-200 [-1, 1024, 2, 2] 0
      Conv2d-201 [-1, 256, 2, 2] 262,144
      BatchNorm2d-202 [-1, 256, 2, 2] 512
      ReLU-203 [-1, 256, 2, 2] 0
      Conv2d-204 [-1, 256, 2, 2] 589,824
      BatchNorm2d-205 [-1, 256, 2, 2] 512
      ReLU-206 [-1, 256, 2, 2] 0
      Conv2d-207 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-208 [-1, 1024, 2, 2] 2,048
      ReLU-209 [-1, 1024, 2, 2] 0
      Bottleneck-210 [-1, 1024, 2, 2] 0
      Conv2d-211 [-1, 256, 2, 2] 262,144
      BatchNorm2d-212 [-1, 256, 2, 2] 512
      ReLU-213 [-1, 256, 2, 2] 0
      Conv2d-214 [-1, 256, 2, 2] 589,824
      BatchNorm2d-215 [-1, 256, 2, 2] 512
      ReLU-216 [-1, 256, 2, 2] 0
      Conv2d-217 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-218 [-1, 1024, 2, 2] 2,048
      ReLU-219 [-1, 1024, 2, 2] 0
      Bottleneck-220 [-1, 1024, 2, 2] 0
      Conv2d-221 [-1, 256, 2, 2] 262,144
      BatchNorm2d-222 [-1, 256, 2, 2] 512
      ReLU-223 [-1, 256, 2, 2] 0
      Conv2d-224 [-1, 256, 2, 2] 589,824
      BatchNorm2d-225 [-1, 256, 2, 2] 512
      ReLU-226 [-1, 256, 2, 2] 0
      Conv2d-227 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-228 [-1, 1024, 2, 2] 2,048
      ReLU-229 [-1, 1024, 2, 2] 0
      Bottleneck-230 [-1, 1024, 2, 2] 0
      Conv2d-231 [-1, 256, 2, 2] 262,144
      BatchNorm2d-232 [-1, 256, 2, 2] 512
      ReLU-233 [-1, 256, 2, 2] 0
      Conv2d-234 [-1, 256, 2, 2] 589,824
      BatchNorm2d-235 [-1, 256, 2, 2] 512
      ReLU-236 [-1, 256, 2, 2] 0
      Conv2d-237 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-238 [-1, 1024, 2, 2] 2,048
      ReLU-239 [-1, 1024, 2, 2] 0
      Bottleneck-240 [-1, 1024, 2, 2] 0
      Conv2d-241 [-1, 256, 2, 2] 262,144
      BatchNorm2d-242 [-1, 256, 2, 2] 512
      ReLU-243 [-1, 256, 2, 2] 0
      Conv2d-244 [-1, 256, 2, 2] 589,824
      BatchNorm2d-245 [-1, 256, 2, 2] 512
      ReLU-246 [-1, 256, 2, 2] 0
      Conv2d-247 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-248 [-1, 1024, 2, 2] 2,048
      ReLU-249 [-1, 1024, 2, 2] 0
      Bottleneck-250 [-1, 1024, 2, 2] 0
      Conv2d-251 [-1, 256, 2, 2] 262,144
      BatchNorm2d-252 [-1, 256, 2, 2] 512
      ReLU-253 [-1, 256, 2, 2] 0
      Conv2d-254 [-1, 256, 2, 2] 589,824
      BatchNorm2d-255 [-1, 256, 2, 2] 512
      ReLU-256 [-1, 256, 2, 2] 0
      Conv2d-257 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-258 [-1, 1024, 2, 2] 2,048
      ReLU-259 [-1, 1024, 2, 2] 0
      Bottleneck-260 [-1, 1024, 2, 2] 0
      Conv2d-261 [-1, 256, 2, 2] 262,144
      BatchNorm2d-262 [-1, 256, 2, 2] 512
      ReLU-263 [-1, 256, 2, 2] 0
      Conv2d-264 [-1, 256, 2, 2] 589,824
      BatchNorm2d-265 [-1, 256, 2, 2] 512
      ReLU-266 [-1, 256, 2, 2] 0
      Conv2d-267 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-268 [-1, 1024, 2, 2] 2,048
      ReLU-269 [-1, 1024, 2, 2] 0
      Bottleneck-270 [-1, 1024, 2, 2] 0
      Conv2d-271 [-1, 256, 2, 2] 262,144
      BatchNorm2d-272 [-1, 256, 2, 2] 512
      ReLU-273 [-1, 256, 2, 2] 0
      Conv2d-274 [-1, 256, 2, 2] 589,824
      BatchNorm2d-275 [-1, 256, 2, 2] 512
      ReLU-276 [-1, 256, 2, 2] 0
      Conv2d-277 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-278 [-1, 1024, 2, 2] 2,048
      ReLU-279 [-1, 1024, 2, 2] 0
      Bottleneck-280 [-1, 1024, 2, 2] 0
      Conv2d-281 [-1, 256, 2, 2] 262,144
      BatchNorm2d-282 [-1, 256, 2, 2] 512
      ReLU-283 [-1, 256, 2, 2] 0
      Conv2d-284 [-1, 256, 2, 2] 589,824
      BatchNorm2d-285 [-1, 256, 2, 2] 512
      ReLU-286 [-1, 256, 2, 2] 0
      Conv2d-287 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-288 [-1, 1024, 2, 2] 2,048
      ReLU-289 [-1, 1024, 2, 2] 0
      Bottleneck-290 [-1, 1024, 2, 2] 0
      Conv2d-291 [-1, 256, 2, 2] 262,144
      BatchNorm2d-292 [-1, 256, 2, 2] 512
      ReLU-293 [-1, 256, 2, 2] 0
      Conv2d-294 [-1, 256, 2, 2] 589,824
      BatchNorm2d-295 [-1, 256, 2, 2] 512
      ReLU-296 [-1, 256, 2, 2] 0
      Conv2d-297 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-298 [-1, 1024, 2, 2] 2,048
      ReLU-299 [-1, 1024, 2, 2] 0
      Bottleneck-300 [-1, 1024, 2, 2] 0
      Conv2d-301 [-1, 256, 2, 2] 262,144
      BatchNorm2d-302 [-1, 256, 2, 2] 512
      ReLU-303 [-1, 256, 2, 2] 0
      Conv2d-304 [-1, 256, 2, 2] 589,824
      BatchNorm2d-305 [-1, 256, 2, 2] 512
      ReLU-306 [-1, 256, 2, 2] 0
      Conv2d-307 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-308 [-1, 1024, 2, 2] 2,048
      ReLU-309 [-1, 1024, 2, 2] 0
      Bottleneck-310 [-1, 1024, 2, 2] 0
      Conv2d-311 [-1, 256, 2, 2] 262,144
      BatchNorm2d-312 [-1, 256, 2, 2] 512
      ReLU-313 [-1, 256, 2, 2] 0
      Conv2d-314 [-1, 256, 2, 2] 589,824
      BatchNorm2d-315 [-1, 256, 2, 2] 512
      ReLU-316 [-1, 256, 2, 2] 0
      Conv2d-317 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-318 [-1, 1024, 2, 2] 2,048
      ReLU-319 [-1, 1024, 2, 2] 0
      Bottleneck-320 [-1, 1024, 2, 2] 0
      Conv2d-321 [-1, 256, 2, 2] 262,144
      BatchNorm2d-322 [-1, 256, 2, 2] 512
      ReLU-323 [-1, 256, 2, 2] 0
      Conv2d-324 [-1, 256, 2, 2] 589,824
      BatchNorm2d-325 [-1, 256, 2, 2] 512
      ReLU-326 [-1, 256, 2, 2] 0
      Conv2d-327 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-328 [-1, 1024, 2, 2] 2,048
      ReLU-329 [-1, 1024, 2, 2] 0
      Bottleneck-330 [-1, 1024, 2, 2] 0
      Conv2d-331 [-1, 256, 2, 2] 262,144
      BatchNorm2d-332 [-1, 256, 2, 2] 512
      ReLU-333 [-1, 256, 2, 2] 0
      Conv2d-334 [-1, 256, 2, 2] 589,824
      BatchNorm2d-335 [-1, 256, 2, 2] 512
      ReLU-336 [-1, 256, 2, 2] 0
      Conv2d-337 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-338 [-1, 1024, 2, 2] 2,048
      ReLU-339 [-1, 1024, 2, 2] 0
      Bottleneck-340 [-1, 1024, 2, 2] 0
      Conv2d-341 [-1, 256, 2, 2] 262,144
      BatchNorm2d-342 [-1, 256, 2, 2] 512
      ReLU-343 [-1, 256, 2, 2] 0
      Conv2d-344 [-1, 256, 2, 2] 589,824
      BatchNorm2d-345 [-1, 256, 2, 2] 512
      ReLU-346 [-1, 256, 2, 2] 0
      Conv2d-347 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-348 [-1, 1024, 2, 2] 2,048
      ReLU-349 [-1, 1024, 2, 2] 0
      Bottleneck-350 [-1, 1024, 2, 2] 0
      Conv2d-351 [-1, 256, 2, 2] 262,144
      BatchNorm2d-352 [-1, 256, 2, 2] 512
      ReLU-353 [-1, 256, 2, 2] 0
      Conv2d-354 [-1, 256, 2, 2] 589,824
      BatchNorm2d-355 [-1, 256, 2, 2] 512
      ReLU-356 [-1, 256, 2, 2] 0
      Conv2d-357 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-358 [-1, 1024, 2, 2] 2,048
      ReLU-359 [-1, 1024, 2, 2] 0
      Bottleneck-360 [-1, 1024, 2, 2] 0
      Conv2d-361 [-1, 256, 2, 2] 262,144
      BatchNorm2d-362 [-1, 256, 2, 2] 512
      ReLU-363 [-1, 256, 2, 2] 0
      Conv2d-364 [-1, 256, 2, 2] 589,824
      BatchNorm2d-365 [-1, 256, 2, 2] 512
      ReLU-366 [-1, 256, 2, 2] 0
      Conv2d-367 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-368 [-1, 1024, 2, 2] 2,048
      ReLU-369 [-1, 1024, 2, 2] 0
      Bottleneck-370 [-1, 1024, 2, 2] 0
      Conv2d-371 [-1, 256, 2, 2] 262,144
      BatchNorm2d-372 [-1, 256, 2, 2] 512
      ReLU-373 [-1, 256, 2, 2] 0
      Conv2d-374 [-1, 256, 2, 2] 589,824
      BatchNorm2d-375 [-1, 256, 2, 2] 512
      ReLU-376 [-1, 256, 2, 2] 0
      Conv2d-377 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-378 [-1, 1024, 2, 2] 2,048
      ReLU-379 [-1, 1024, 2, 2] 0
      Bottleneck-380 [-1, 1024, 2, 2] 0
      Conv2d-381 [-1, 256, 2, 2] 262,144
      BatchNorm2d-382 [-1, 256, 2, 2] 512
      ReLU-383 [-1, 256, 2, 2] 0
      Conv2d-384 [-1, 256, 2, 2] 589,824
      BatchNorm2d-385 [-1, 256, 2, 2] 512
      ReLU-386 [-1, 256, 2, 2] 0
      Conv2d-387 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-388 [-1, 1024, 2, 2] 2,048
      ReLU-389 [-1, 1024, 2, 2] 0
      Bottleneck-390 [-1, 1024, 2, 2] 0
      Conv2d-391 [-1, 256, 2, 2] 262,144
      BatchNorm2d-392 [-1, 256, 2, 2] 512
      ReLU-393 [-1, 256, 2, 2] 0
      Conv2d-394 [-1, 256, 2, 2] 589,824
      BatchNorm2d-395 [-1, 256, 2, 2] 512
      ReLU-396 [-1, 256, 2, 2] 0
      Conv2d-397 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-398 [-1, 1024, 2, 2] 2,048
      ReLU-399 [-1, 1024, 2, 2] 0
      Bottleneck-400 [-1, 1024, 2, 2] 0
      Conv2d-401 [-1, 256, 2, 2] 262,144
      BatchNorm2d-402 [-1, 256, 2, 2] 512
      ReLU-403 [-1, 256, 2, 2] 0
      Conv2d-404 [-1, 256, 2, 2] 589,824
      BatchNorm2d-405 [-1, 256, 2, 2] 512
      ReLU-406 [-1, 256, 2, 2] 0
      Conv2d-407 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-408 [-1, 1024, 2, 2] 2,048
      ReLU-409 [-1, 1024, 2, 2] 0
      Bottleneck-410 [-1, 1024, 2, 2] 0
      Conv2d-411 [-1, 256, 2, 2] 262,144
      BatchNorm2d-412 [-1, 256, 2, 2] 512
      ReLU-413 [-1, 256, 2, 2] 0
      Conv2d-414 [-1, 256, 2, 2] 589,824
      BatchNorm2d-415 [-1, 256, 2, 2] 512
      ReLU-416 [-1, 256, 2, 2] 0
      Conv2d-417 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-418 [-1, 1024, 2, 2] 2,048
      ReLU-419 [-1, 1024, 2, 2] 0
      Bottleneck-420 [-1, 1024, 2, 2] 0
      Conv2d-421 [-1, 256, 2, 2] 262,144
      BatchNorm2d-422 [-1, 256, 2, 2] 512
      ReLU-423 [-1, 256, 2, 2] 0
      Conv2d-424 [-1, 256, 2, 2] 589,824
      BatchNorm2d-425 [-1, 256, 2, 2] 512
      ReLU-426 [-1, 256, 2, 2] 0
      Conv2d-427 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-428 [-1, 1024, 2, 2] 2,048
      ReLU-429 [-1, 1024, 2, 2] 0
      Bottleneck-430 [-1, 1024, 2, 2] 0
      Conv2d-431 [-1, 256, 2, 2] 262,144
      BatchNorm2d-432 [-1, 256, 2, 2] 512
      ReLU-433 [-1, 256, 2, 2] 0
      Conv2d-434 [-1, 256, 2, 2] 589,824
      BatchNorm2d-435 [-1, 256, 2, 2] 512
      ReLU-436 [-1, 256, 2, 2] 0
      Conv2d-437 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-438 [-1, 1024, 2, 2] 2,048
      ReLU-439 [-1, 1024, 2, 2] 0
      Bottleneck-440 [-1, 1024, 2, 2] 0
      Conv2d-441 [-1, 256, 2, 2] 262,144
      BatchNorm2d-442 [-1, 256, 2, 2] 512
      ReLU-443 [-1, 256, 2, 2] 0
      Conv2d-444 [-1, 256, 2, 2] 589,824
      BatchNorm2d-445 [-1, 256, 2, 2] 512
      ReLU-446 [-1, 256, 2, 2] 0
      Conv2d-447 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-448 [-1, 1024, 2, 2] 2,048
      ReLU-449 [-1, 1024, 2, 2] 0
      Bottleneck-450 [-1, 1024, 2, 2] 0
      Conv2d-451 [-1, 256, 2, 2] 262,144
      BatchNorm2d-452 [-1, 256, 2, 2] 512
      ReLU-453 [-1, 256, 2, 2] 0
      Conv2d-454 [-1, 256, 2, 2] 589,824
      BatchNorm2d-455 [-1, 256, 2, 2] 512
      ReLU-456 [-1, 256, 2, 2] 0
      Conv2d-457 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-458 [-1, 1024, 2, 2] 2,048
      ReLU-459 [-1, 1024, 2, 2] 0
      Bottleneck-460 [-1, 1024, 2, 2] 0
      Conv2d-461 [-1, 256, 2, 2] 262,144
      BatchNorm2d-462 [-1, 256, 2, 2] 512
      ReLU-463 [-1, 256, 2, 2] 0
      Conv2d-464 [-1, 256, 2, 2] 589,824
      BatchNorm2d-465 [-1, 256, 2, 2] 512
      ReLU-466 [-1, 256, 2, 2] 0
      Conv2d-467 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-468 [-1, 1024, 2, 2] 2,048
      ReLU-469 [-1, 1024, 2, 2] 0
      Bottleneck-470 [-1, 1024, 2, 2] 0
      Conv2d-471 [-1, 256, 2, 2] 262,144
      BatchNorm2d-472 [-1, 256, 2, 2] 512
      ReLU-473 [-1, 256, 2, 2] 0
      Conv2d-474 [-1, 256, 2, 2] 589,824
      BatchNorm2d-475 [-1, 256, 2, 2] 512
      ReLU-476 [-1, 256, 2, 2] 0
      Conv2d-477 [-1, 1024, 2, 2] 262,144
      BatchNorm2d-478 [-1, 1024, 2, 2] 2,048
      ReLU-479 [-1, 1024, 2, 2] 0
      Bottleneck-480 [-1, 1024, 2, 2] 0
      Conv2d-481 [-1, 512, 2, 2] 524,288
      BatchNorm2d-482 [-1, 512, 2, 2] 1,024
      ReLU-483 [-1, 512, 2, 2] 0
      Conv2d-484 [-1, 512, 1, 1] 2,359,296
      BatchNorm2d-485 [-1, 512, 1, 1] 1,024
      ReLU-486 [-1, 512, 1, 1] 0
      Conv2d-487 [-1, 2048, 1, 1] 1,048,576
      BatchNorm2d-488 [-1, 2048, 1, 1] 4,096
      Conv2d-489 [-1, 2048, 1, 1] 2,097,152
      BatchNorm2d-490 [-1, 2048, 1, 1] 4,096
      ReLU-491 [-1, 2048, 1, 1] 0
      Bottleneck-492 [-1, 2048, 1, 1] 0
      Conv2d-493 [-1, 512, 1, 1] 1,048,576
      BatchNorm2d-494 [-1, 512, 1, 1] 1,024
      ReLU-495 [-1, 512, 1, 1] 0
      Conv2d-496 [-1, 512, 1, 1] 2,359,296
      BatchNorm2d-497 [-1, 512, 1, 1] 1,024
      ReLU-498 [-1, 512, 1, 1] 0
      Conv2d-499 [-1, 2048, 1, 1] 1,048,576
      BatchNorm2d-500 [-1, 2048, 1, 1] 4,096
      ReLU-501 [-1, 2048, 1, 1] 0
      Bottleneck-502 [-1, 2048, 1, 1] 0
      Conv2d-503 [-1, 512, 1, 1] 1,048,576
      BatchNorm2d-504 [-1, 512, 1, 1] 1,024
      ReLU-505 [-1, 512, 1, 1] 0
      Conv2d-506 [-1, 512, 1, 1] 2,359,296
      BatchNorm2d-507 [-1, 512, 1, 1] 1,024
      ReLU-508 [-1, 512, 1, 1] 0
      Conv2d-509 [-1, 2048, 1, 1] 1,048,576
      BatchNorm2d-510 [-1, 2048, 1, 1] 4,096
      ReLU-511 [-1, 2048, 1, 1] 0
      Bottleneck-512 [-1, 2048, 1, 1] 0
      AdaptiveAvgPool2d-513 [-1, 2048, 1, 1] 0
      Linear-514 [-1, 100] 204,900
      LogSoftmax-515 [-1, 100] 0
      ================================================================
      Total params: 58,348,708
      Trainable params: 204,900
      Non-trainable params: 58,143,808
      ----------------------------------------------------------------
      Input size (MB): 0.01
      Forward/backward pass size (MB): 12.40
      Params size (MB): 222.58
      Estimated Total Size (MB): 234.99
      ----------------------------------------------------------------
      None
      Params to learn
      fc.0.weight
      fc.0.bias
      Files already downloaded and verified
      Files already downloaded and verified
      Epoch 0/9
      ----------
      Time elapsed 0m 21s
      train Loss: 7.5111 Acc: 0.1484
      Time elapsed 0m 26s
      valid Loss: 3.7821 Acc: 0.2493
      /usr/local/lib/python3.7/dist-packages/torch/optim/lr_scheduler.py:154: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
      warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
      Optimizer learning rate: 0.0100000

      Epoch 1/9
      ----------
      Time elapsed 0m 47s
      train Loss: 2.9405 Acc: 0.3109
      Time elapsed 0m 52s
      valid Loss: 3.2014 Acc: 0.2739
      Optimizer learning rate: 0.0100000

      Epoch 2/9
      ----------
      Time elapsed 1m 12s
      train Loss: 2.5866 Acc: 0.3622
      Time elapsed 1m 17s
      valid Loss: 3.2239 Acc: 0.2787
      Optimizer learning rate: 0.0100000

      Epoch 3/9
      ----------
      Time elapsed 1m 38s
      train Loss: 2.4077 Acc: 0.3969
      Time elapsed 1m 43s
      valid Loss: 3.2608 Acc: 0.2811
      Optimizer learning rate: 0.0100000

      Epoch 4/9
      ----------
      Time elapsed 2m 4s
      train Loss: 2.2742 Acc: 0.4263
      Time elapsed 2m 9s
      valid Loss: 3.4260 Acc: 0.2689
      Optimizer learning rate: 0.0100000

      Epoch 5/9
      ----------
      Time elapsed 2m 29s
      train Loss: 2.1942 Acc: 0.4434
      Time elapsed 2m 34s
      valid Loss: 3.4697 Acc: 0.2760
      Optimizer learning rate: 0.0100000

      Epoch 6/9
      ----------
      Time elapsed 2m 54s
      train Loss: 2.1369 Acc: 0.4583
      Time elapsed 2m 59s
      valid Loss: 3.5391 Acc: 0.2744
      Optimizer learning rate: 0.0100000

      Epoch 7/9
      ----------
      Time elapsed 3m 20s
      train Loss: 2.0382 Acc: 0.4771
      Time elapsed 3m 24s
      valid Loss: 3.5992 Acc: 0.2721
      Optimizer learning rate: 0.0100000

      Epoch 8/9
      ----------
      Time elapsed 3m 45s
      train Loss: 1.9776 Acc: 0.4939
      Time elapsed 3m 50s
      valid Loss: 3.7533 Acc: 0.2685
      Optimizer learning rate: 0.0100000

      Epoch 9/9
      ----------
      Time elapsed 4m 11s
      train Loss: 1.9309 Acc: 0.5035
      Time elapsed 4m 16s
      valid Loss: 3.9663 Acc: 0.2558
      Optimizer learning rate: 0.0100000

      Training complete in 4m 16s
      Best val Acc: 0.281100

      到此这篇关于PyTorch一小时掌握之迁移学习篇的文章就介绍到这了,更多相关PyTorch迁移学习内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

      【转自:http://www.1234xp.com/xggf.html 欢迎转载】