python机器学习高数篇之函数极限与导数

编辑: admin 分类: python 发布时间: 2021-12-03 来源:互联网
目录
  • 函数极限
    • 函数极限练习题.1
  • 函数极限练习题.2
    • 导数
      • python求导数的三种写法
        • 方法一
        • 方法二
        • 方法三

      不知道大家有没有类似的经历,斗志满满地翻开厚厚的机器学习书,很快被一个个公式炸蒙了。

      想要学习机器学习算法,却很难看的懂里面的数学公式,实际应用只会调用库里的函数,无法优化算法。

      学好机器学习,没有数学知识是不行的。数学知识的积累是一个漫长的过程,罗马也不是一夜建成的。

      如果想要入门机器学习,数学基础比较薄弱,想打牢相关数学基础,可以关注笔者,一起学习(数学大佬也可以来扫一眼python代码)~

      接下来我们以高数(同济第七版)课后习题为例,使用python语言来求解函数和导数的习题。

      这样大家做课后练习的时候,也可以用python验证一下做的对不对。

      这里用到两个常见的Python库,sympy和numpy,学习的时候可以参考官方文档。

      sympy 是Python语言编写的符号计算库,这里用于处理数学对象的计算称为符号计算。

      官方在线文档:https://docs.sympy.org/dev/index.html

      numpy是一个Python库,支持大量的多维数组及矩阵运算,提供用于数组快速操作的各种API。

      官方在线文档:https://www.numpy.org.cn/reference/

      函数极限

      我们来看一下高数课本(同济第七版)对函数极限的定义:

      在这里插入图片描述

      当时上课的时候就觉得这段函数定义太反人类了啊,瞬间打击学习高数的兴趣。

      为什么函数极限的定义会这么难以理解呢?

      这里需要插入数学史的内容了,这个问题要追溯到几百年前…

      古希腊的数学家在处理无穷小和极限问题时,使用穷竭法等方法非常的繁琐。

      到了牛顿时代,微积分还不成熟,也就是说牛顿当时也没把无穷小和极限的问题弄明白。

      后面一个个大牛都试图把相关的漏洞补齐,我们看到的这个ε-δ定义的极限,是由维尔斯特拉斯总结了前面各个大牛的经验,最终提出来的。

      所以最终这个定义我们看不懂也正常,这个概念的形成大约经历了几百年,就算拿给当时的牛顿看也是蒙的呢。

      不过这个定义,也是公认的非常严谨、接近本质的函数极限定义了。

      光说概念太没意思了,学数学嘛,肯定要做题。我们来看几道高数题吧——

      函数极限练习题.1

      证明:

      在这里插入图片描述

      python版证明:

      import sympy
      from sympy import oo
      import numpy as np
      x = sympy.Symbol('x')
      f = (x ** 2 - 4)/(x + 2)
      sympy.limit(f,x,-2)
      

      输出:-4

      函数极限练习题.2

      证明:

      在这里插入图片描述

      python版证明:

      import sympy           #导入sympy符号计算库
      from sympy import oo   #oo为无穷大符号
      import numpy as np
      x = sympy.Symbol('x')
      f = sympy.sin(x)/sympy.sqrt(x)
      sympy.limit(f,x,oo)    #求极限
      

      输出:0

      关于limit的用法,我们来查看官方文档:

      在这里插入图片描述

      导数

      导数定义:

      在这里插入图片描述

      理解了概念,来做几道导数题吧——

      导数练习题一(高数 总习题二 第8题(1)):

      求下列导数:

      在这里插入图片描述

      python版求导:

      import sympy
      from sympy import *
      from sympy.abc import x,y
      diff(asin(sin(x)))
      

      输出:cos(x)/sqrt(-sin(x)**2 + 1)

      python求导数的三种写法

      python中求导数主要有三种方法,我们用练习题来演示:

      导数练习题:

      求下列导数:

      在这里插入图片描述

      方法一

      使用sympy的diff函数。

      diff版求导:

      import sympy
      from sympy import *
      from sympy.abc import x,y
      diff(5*x**4 + 4*x**3 +2*x**2 + x + 666)
      

      输出:20*x**3 + 12*x**2 + 4*x + 1

      方法二

      使用numpy库里的poly1d函数

      在官方文档里,查看一下poly1d的用法:

      在这里插入图片描述

      poly1d版求导:

      import numpy as np
      p = np.poly1d([5,4, 0 ,2 ,1]) #构造多项式,每项是多项式前的系数,幂次由高到低,没有该幂次该项为0
      print(np.polyder(p,1)) #求一阶导数
      print(p.deriv(1))	   #另一种方法求一阶导数
      

      输出:

      3 2
      20 x + 12 x + 2

      方法三

      使用scipy.misc模块下的derivative函数

      在官方文档里,查看一下derivative的用法:

      在这里插入图片描述

      derivative版求导:

      import numpy as npfrom scipy.misc 
      import derivative
      def f(x):    
      	return (5*x**4 + 4*x**3 +2*x**2 + x + 666)
      print (derivative(f,3,dx=1e-6))  #求x=3时的导数 
      

      输出:

      661.0000001501248

      到此这篇关于python机器学习高数篇之函数极限与导数的文章就介绍到这了,更多相关python极限与导数内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

      【来源:自由互联、日本站群服务器