python机器学习高数篇之泰勒公式

编辑: admin 分类: python 发布时间: 2021-12-03 来源:互联网

不少同学一提到泰勒公式,脑海里立马浮现高大上的定义和长长的公式,令人望而生畏。

实际上,泰勒公式没有那么可怕,它是用简单的多项式来逼近一个光滑的函数,从而近似替代不熟悉的函数。由于泰勒公式具有将复杂函数近似成多个幂函数叠加形式的性质,可以用它进行比较、求极限、求导、解微分方程等。

我们先来看一下泰勒公式的发明者,布鲁克·泰勒——

在这里插入图片描述

布鲁克·泰勒(Brook Taylor,1685-1732),英国数学家,牛顿学派最优秀的代表人物之一,他于1712年的一封信里首次叙述了泰勒公式。

再来看一下高数书上对泰勒公式的定义:

在这里插入图片描述

公式3-5就称为f(x)在x0处的带有拉格朗日余项的n阶泰勒公式。

初看这个泰勒公式的定义,就觉得恢宏大气,气势磅礴。不过光从泰勒公式的定义,很难直观看出它是怎么用多项式逼近原函数的。接下来我们用图像和图表来感受一下——

这里我们先列举出f(x) = cosx在原点的泰勒2阶、4阶、6阶、8阶、10阶的多项式,并用图像表示该函数及其泰勒n阶多项式。

在这里插入图片描述

对应图像如下,其中黑色线条为原函数f(x),彩色线条为多项式g(x)。可以看到随着阶数的增大,多项式在更大范围内越来越逼近原函数。

在这里插入图片描述

我们再用python实现函数y=cosx的泰勒n阶多项式,并与y=cosx的实际值进行比较,其中令n=40。

def f_cos(x):
    m = 20+1
    sum = 1.0
    for i in range(1,m): #range函数取值是左闭右开
        n = 2 * i 
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i+1):
            tmp1 = -tmp1             
        for j in range(1,n+1):                    
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3
    return sum
from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_cos(x) = " + str(f_cos(x)))
    print("cos(x) = " + str(cos(x)))

比较自定义的f_cos(x)和numpy库的cosx的误差:

x取值 自定义的f_cos(x) numpy库的cosx 误差(f_cos(x) - cos(x)) 分析 20 2577.3069 0.4081 2576.8988 误差非常大 19 305.1701 0.9887 304.1814 误差较大 18 32.5969 0.6603 31.9366 存在误差 17 2.6676 -0.2752 2.9428 存在误差 16 -0.7234 -0.9577 0.2343 存在0.1级误差 15 -0.7439 -0.7597 0.0158 存在0.01级误差 14 0.1376 0.1367 0.0009 存在0.0001级误差 13 0.9075 0.9074 0.0000 精度范围内一致 12 0.8439 0.8439 0.0000 精度范围内一致 11 0.0044 0.0044 0.0000 精度范围内一致 10 -0.8391 -0.8391 0.0000 精度范围内一致 9 -0.9111 -0.9111 0.0000 精度范围内一致 8 -0.1455 -0.1455 0.0000 精度范围内一致 7 0.7539 0.7539 0.0000 精度范围内一致 6 0.9602 0.9602 0.0000 精度范围内一致 5 0.2837 0.2837 0.0000 精度范围内一致 4 -0.6536 -0.6536 0.0000 精度范围内一致 3 -0.9900 -0.9900 0.0000 精度范围内一致 2 -0.4161 -0.4161 0.0000 精度范围内一致 1 0.5403 0.5403 0.0000 精度范围内一致 0 1.0000 1.0000 0.0000 精度范围内一致

由于f(x) = cosx函数关于y轴对称,这里只列举出了x轴右半部分[0,20]的范围,x轴左半部分的结果与右半部分结果相同。

在[0,20]范围内,当x=20时,二者的误差非常大。随着x的减小,二者的误差也在逐渐减小。在[0,13]范围内,二者在精度范围内完全一致,几乎零误差。

大家可以尝试一下,把n的值调大,这个精度一致的范围会变大。例如此例若n=30,即y=cosx的泰勒30阶多项式,则在[-20,20]范围内,二者精度都完全一致。感兴趣的同学可以运用同样的方法,分析一下其他函数。

再试着写出函数y=sinx的泰勒n阶多项式的python程序,其中n=19。

def f_sin(x):
    m = 10+1
    sum = 0.0
    for i in range(1,m):
        n = 2 * i - 1     
        tmp1,tmp2,tmp3 = 1,1,1
        for j in range(1,i):
            tmp1 = -tmp1  
        for j in range(1,n+1):          
            tmp2 = tmp2*x
            tmp3 = tmp3*j
        sum = sum + tmp1*tmp2/tmp3 
    return sum
from numpy import *
for x in range(-20,21):
    print("x = " + str(x))
    print("f_sin(x) = " + str(f_sin(x)))
    print("sin(x) = " + str(sin(x)))

后续会继续增加一些函数的泰勒n阶多项式python程序(可能会偷懒)。

最后推荐一个比较好用的在线画函数的工具Desmos:

https://www.desmos.com/calculator?lang=zh-CN

简易教程:

https://www.ravenxrz.ink/archives/27d14722.html

还可以用著名的心形线画个爱心哦:

在这里插入图片描述

到此这篇关于python机器学习高数篇之泰勒公式的文章就介绍到这了,更多相关python泰勒公式内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!

【文章原创作者:http://www.yidunidc.com/st.html转发请说明出处】