Python爬虫技术
目录
- 一、Python爬虫简单介绍
- 1、抓取网页本身的接口
- 2、网页抓取后的处理
- 二、爬虫架构
- 三、URL管理器
- 1、基本功能
- 2、存蓄方式
- 3、网页下载器(urllib)
- 四、网页解析器(BeautifulSoup)
- 1、解析器选择
- 2、BeautifulSoup
- 3、使用说明
一、Python爬虫简单介绍
1、抓取网页本身的接口
相比与其他静态的编程语言,如java,c#,C++,python抓取网页的接口更简洁;相比其他动态脚本语言,如Perl,shell,python的urllib包提供了较为完整的访问网页文档的API。(当然ruby也是很好的选择)此外,抓取网页有时候需要模拟游览器的行为,很多网站对于生硬的爬虫抓取都是封杀的。这是我们需要模拟user agen的行为构造合适的请求,譬如模拟用户登录、模拟session/cookie的存蓄和设置。在Python里都有非常优秀的第三方包帮你搞定,如Request,mechanize。
2、网页抓取后的处理
抓取的网页通常需要处理,比如过滤html标签,提取文本等。Python的beautiulsoap提供了简洁的文档处理功能,能用极短的代码完成大部分文档的处理。
其实以上功能很多的语言都能做,但是用Python能够干得最快,最干净。
Life is short, you need python.
PS:python2.x和python3.x有很大不同,本文先讨论python3.x的爬虫实现方法。
二、爬虫架构
架构组成
URL管理器:管理待爬的url集合好已爬取的url集合,传送待爬的url给网页下载器。
网页下载器(urllib):爬取url对应的网页你,存蓄成字符串,传送给网页解析器。
网页解析器(BeautifulSoap):解析出有价值的数据,存蓄下来,同时补充url到URL管理器。
三、URL管理器
1、基本功能
添加新的url到爬取url集合中。
判断待添加的url是否在容器中(包括待爬取url集合和已爬取的url集合)。
获取待爬取的url。
判断是否有待爬取的url。
将爬取完成的url从待爬取的url集合移动到已爬取url集合。
2、存蓄方式
内存(python内存)
待爬取url集合:set()
已爬取url集合:set()
关系数据库(mysql)
urls(url,is_crawled)
缓存(redis)
待爬取url集合:set
已爬取url集合:set
大型互联网公司,由于缓存数据库的高性能,一般把url存蓄在缓存数据库中。小型公司,一般把url存蓄在内存中,如果想要永存存蓄,则存蓄到关系数据库中。
3、网页下载器(urllib)
将url对应网页下载到本地,存蓄成一个文件或字符串。
基本方法
新建baidu.py,内容如下:
import urllib.request response = urllib.request.urlopen('http://www.baidu.com') buff = response.read() html = buff.decode("utf8") print(html) 命令行中执行python baidu.py,则可以打印出获取到的网页。
构造Request:
上面的代码,可以修改为:
import urllib.request request = urllib.request.Request('http://www.baidu.com') response = urllib.request.urlopen(request) buff = response.read() html = buff.decode("utf8") print(html)
携带参数:
新建baidu2.py,内容如下:
import urllib.request import urllib.parse url = 'http://www.baidu.com' values = {'name': 'voidking','language': 'Python'} data = urllib.parse.urlencode(values).encode(encoding='utf-8',errors='ignore') headers = { 'User-Agent' : 'Mozilla/5.0 (Windows NT 10.0; WOW64; rv:50.0) Gecko/20100101 Firefox/50.0' } request = urllib.request.Request(url=url, data=data,headers=headers,method='GET') response = urllib.request.urlopen(request) buff = response.read() html = buff.decode("utf8") print(html)
使用Fiddler监听数据:
我们想要查看一下,我们的请求是否真的携带了参数,所以需要使用fiddler。
打开fiddler之后,却意外发现,上面的代码会报错504,无论是baidu.py还是baidu2.py。
虽然python有报错但是在fiddler中,我们可以看到请求信息,确实携带了参数。
经过寻找资料,发现python以前版本的Request都不支持代理环境下访问https。但是,最近的版本应该支持了才对。那么,最简单的办法,就是换一个使用http协议的url来爬取,比如,把http://www.baidn.com改成http://www.baidu.com/,请求成功了!神奇!!!
添加处理器:
import urllib.request import http.cookiejar # 创建cookie容器 cj = http.cookiejar.CookieJar() # 创建opener opener = urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cj)) # 给urllib.request安装opener urllib.request.install_opener(opener) # 请求 request = urllib.request.Request('http://www.baidu.com/') response = urllib.request.urlopen(request) buff = response.read() html = buff.decode("utf8") print(html) print(cj)
四、网页解析器(BeautifulSoup)
从网页中提取有价值的数据和新的url列表。
1、解析器选择
为了实现解析器,可以选择使用正则表达式、html.parser、BeautifulSoup、lxml等,这里我们选择BeautfulSoup。
其中,正则表达式基于模糊匹配,而另外三种则是基于DOM结构化解析。
2、BeautifulSoup
安装测试
(1)安装,在命令行下执行pip install beautifulsoup4。
(2)测试。
import bs4 print(bs4)
3、使用说明
创建BeautifulSoup对象:
import bs4 from bs4 import BeautifulSoup # 根据html网页字符串创建BeautifulSoup对象 html_doc = """ <html><head><title>The Dormouse's story</title></head> <body> <p class="title"><b>The Dormouse's story</b></p> <p class="story">Once upon a time there were three little sisters; and their names were <a href="//www.jb51.net/admin/index.asp" class="sister" id="link1">Elsie</a>, <a href="//www.jb51.net/admin/index.asp" class="sister" id="link2">Lacie</a> and <a href="//www.jb51.net/admin/index.asp" class="sister" id="link3">Tillie</a>; and they lived at the bottom of a well.</p> <p class="story">...</p> """ soup = BeautifulSoup(html_doc) print(soup.prettify())
访问节点;
print(soup.title) print(soup.title.name) print(soup.title.string) print(soup.title.parent.name) print(soup.p) print(soup.p['class'])
指定tag、class或id:
print(soup.find_all('a')) print(soup.find('a')) print(soup.find(class_='title')) print(soup.find(id="link3")) print(soup.find('p',class_='title'))
从文档中找到所以<a>标签的链接:
for link in soup.find_all('a'): print(link.get('href'))
出现了警告,根据提示,。我们在创建BeautifulSoup对象时,指定解析器即可。
soup = BeautifulSoup(html_doc,'html.parser')
从文档中获取所以文字内容:
print(soup.get_text())
正则匹配:
link_node = soup.find('a',href=re.compile(r"til")) print(link_node)
到此这篇关于Python爬虫技术的文章就介绍到这了,更多相关Python爬虫内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!
【文章出处:日本大带宽服务器http://www.558idc.com/jap.html 复制请保留原URL】