基于python定位棋子位置及识别棋子颜色
目录
- 1、将棋盘分割成19x19的小方格
- 2、根据像素占比识别是否是黑色棋子
- 3、根据像素占比识别是否是白色棋子
- 4、将棋盘棋子位置通过列表表示
- 完整代码如下:
这一篇主要实现定位棋子位置及识别棋子颜色。
围棋棋盘原图如下:
经过上一章节处理,已经将棋盘位置找到,如下图:
现在根据新图,进行棋子位置的定位
1、将棋盘分割成19x19的小方格
为了定位出棋盘每个交叉点上,是否有棋子,需要将棋盘分割成19X19的小方格,由于围棋棋盘每个交叉线直接距离相同,是矩形,因此分割成小方格十分容易,如下图:
若想将棋盘分割成19x19的小方格,需要知道以下几个参数。
small_length=38 #每个小格宽高 qizi_zhijing=38#棋子直径 zuoshangjiao=20#棋盘四周的宽度
这些可以使用imagewathch(VS下opencv的插件)工具,方便的知道,这个工具可以实时查看图像的宽高,某个位置的像素值。这个工具的使用可以看我另外一篇文章:opencv用VS2013调试时用Image Watch插件查看图片,代替一堆数据,直观很多。
下面是将原图分割成19X19小方格的代码
img = cv2.imread("src.jpg") cv2.imshow("src",img) #变量定义 small_length=38 #每个小格宽高 qizi_zhijing=38#棋子直径 zuoshangjiao=20#棋盘四周的宽度 for i in range(19): for j in range(19): #print(i,j) lie = i hang = j Tp_x = small_length * lie Tp_y = small_length * hang Tp_width = qizi_zhijing Tp_height = qizi_zhijing #测试用 cv2.rectangle(img, (Tp_x, Tp_y), (Tp_x + Tp_width, Tp_y + Tp_height),(255, 0, 0), 2) cv2.imwrite('img.jpg', img) img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w cv2.imwrite('img_temp3.jpg', img_temp) cv2.imshow("3", img_temp) cv2.waitKey(20)
2、根据像素占比识别是否是黑色棋子
上面三种图像是我们分割成小方格后的三种主要形态,分别代表黑色棋子,白色棋子以及无棋子。其中黑色棋子最好查找,我们将图像进行灰度化——二值化后,通过统计黑色像素占比超过一定数值,就能知道该处是否有黑色棋子。
这里我将统计黑色占比的代码,封装成了一个函数,如下;
""" "******************************************************************************************* *函数功能 :统计二值化图片黑色像素点百分比 *输入参数 :输入裁剪后图像, *返 回 值 :返回黑色像素点占比0-1之间 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def Heise_zhanbi(img): [height, width, tongdao] = img.shape #print(width, height, tongdao) # cv2.imshow("3", img) # cv2.waitKey(20) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("binary", gray) # cv2.waitKey(100) etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY) # cv2.imshow("threshold", threshold) # cv2.waitKey(200) a = 0 b = 0 counter = 0#;/*目标像素点个数*/ zhanbi = 0#;/*目标像素点比值*/ for row in range(height): for col in range(width): val = threshold[row][col] if (val) == 0:#黑色 a = a + 1 else: b = b + 1 zhanbi = (float)(a) / (float)(height*width) #print("黑色像素个数", a, "黑色像素占比", zhanbi) return zhanbi
3、根据像素占比识别是否是白色棋子
同样的,我们可以统计像素中白色占比,来进行识别该位置是否是白色棋子,但是这里需要注意一个问题,如果按照上面黑色棋子识别方法进行灰度化、二值化会造成白色棋子和无棋子分辨不了,二者都有大面积的白色,因此这里需要调整二值化的阈值,分开无棋子和白色棋子的图像。
封装好的代码如下:
""" "******************************************************************************************* *函数功能 :统计二值化图片白色像素点百分比 *输入参数 :输入裁剪后图像, *返 回 值 :返回白色像素点占比0-1之间 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def Baise_zhanbi(img): [height, width, tongdao] = img.shape #print(width, height, tongdao) # cv2.imshow("3", img) # cv2.waitKey(20) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("binary", gray) # cv2.waitKey(100) etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY) # cv2.imshow("threshold", threshold) # cv2.waitKey(200) a = 0 b = 0 counter = 0#;/*目标像素点个数*/ zhanbi = 0#;/*目标像素点比值*/ for row in range(height): for col in range(width): val = threshold[row][col] if (val) == 0:#黑色 a = a + 1 else: b = b + 1 zhanbi = (float)(b) / (float)(height*width) #print("白色像素个数", b, "白色像素占比", zhanbi) return zhanbi
效果图如下:
4、将棋盘棋子位置通过列表表示
我们新建一个19*19的列表来存储棋子,列表中:
0:代表无棋子
1:代表白色
2:代表黑色
代码如下:
list = [[0 for i in range(19)] for j in range(19)]
当为黑色棋子时:
list[hang][lie]=2#黑色 #print("当前棋子为黑色") print("第", i, "行,第", j, "列棋子为黑色:", i, j)
当为白色棋子时:
list[hang][lie] = 1 # 白色 #print("当前棋子为白色") print("第", i, "行,第", j, "列棋子为白色:", i, j)
效果图如下:
完整代码如下:
from PIL import ImageGrab import numpy as np import cv2 from glob import glob import os import time #Python将数字转换成大写字母 def getChar(number): factor, moder = divmod(number, 26) # 26 字母个数 modChar = chr(moder + 65) # 65 -> 'A' if factor != 0: modChar = getChar(factor-1) + modChar # factor - 1 : 商为有效值时起始数为 1 而余数是 0 return modChar def getChars(length): return [getChar(index) for index in range(length)] """ "******************************************************************************************* *函数功能 :统计二值化图片黑色像素点百分比 *输入参数 :输入裁剪后图像, *返 回 值 :返回黑色像素点占比0-1之间 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def Heise_zhanbi(img): [height, width, tongdao] = img.shape #print(width, height, tongdao) # cv2.imshow("3", img) # cv2.waitKey(20) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("binary", gray) # cv2.waitKey(100) etVal, threshold = cv2.threshold(gray, 125, 255, cv2.THRESH_BINARY) # cv2.imshow("threshold", threshold) # cv2.waitKey(200) a = 0 b = 0 counter = 0#;/*目标像素点个数*/ zhanbi = 0#;/*目标像素点比值*/ for row in range(height): for col in range(width): val = threshold[row][col] if (val) == 0:#黑色 a = a + 1 else: b = b + 1 zhanbi = (float)(a) / (float)(height*width) #print("黑色像素个数", a, "黑色像素占比", zhanbi) return zhanbi """ "******************************************************************************************* *函数功能 :统计二值化图片白色像素点百分比 *输入参数 :输入裁剪后图像, *返 回 值 :返回白色像素点占比0-1之间 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def Baise_zhanbi(img): [height, width, tongdao] = img.shape #print(width, height, tongdao) # cv2.imshow("3", img) # cv2.waitKey(20) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("binary", gray) # cv2.waitKey(100) etVal, threshold = cv2.threshold(gray, 235, 255, cv2.THRESH_BINARY) # cv2.imshow("threshold", threshold) # cv2.waitKey(200) a = 0 b = 0 counter = 0#;/*目标像素点个数*/ zhanbi = 0#;/*目标像素点比值*/ for row in range(height): for col in range(width): val = threshold[row][col] if (val) == 0:#黑色 a = a + 1 else: b = b + 1 zhanbi = (float)(b) / (float)(height*width) #print("白色像素个数", b, "白色像素占比", zhanbi) return zhanbi """ "******************************************************************************************* *函数功能 :定位棋盘位置 *输入参数 :截图 *返 回 值 :裁剪后的图像 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def dingweiqizi_weizhi(img): '''******************************************** 1、定位棋盘位置 ********************************************''' #img = cv2.imread("./screen/1.jpg") image = img.copy() w, h, c = img.shape img2 = np.zeros((w, h, c), np.uint8) img3 = np.zeros((w, h, c), np.uint8) # img = ImageGrab.grab() #bbox specifies specific region (bbox= x,y,width,height *starts top-left) hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) lower = np.array([10, 0, 0]) upper = np.array([40, 255, 255]) mask = cv2.inRange(hsv, lower, upper) erodeim = cv2.erode(mask, None, iterations=2) # 腐蚀 dilateim = cv2.dilate(erodeim, None, iterations=2) img = cv2.bitwise_and(img, img, mask=dilateim) frame = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, dst = cv2.threshold(frame, 100, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(dst, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE) #cv2.imshow("0", img) i = 0 maxarea = 0 nextarea = 0 maxint = 0 for c in contours: if cv2.contourArea(c) > maxarea: maxarea = cv2.contourArea(c) maxint = i i += 1 # 多边形拟合 epsilon = 0.02 * cv2.arcLength(contours[maxint], True) if epsilon < 1: print("error : epsilon < 1") pass # 多边形拟合 approx = cv2.approxPolyDP(contours[maxint], epsilon, True) [[x1, y1]] = approx[0] [[x2, y2]] = approx[2] checkerboard = image[y1:y2, x1:x2] # cv2.imshow("1", checkerboard) # cv2.waitKey(1000) #cv2.destroyAllWindows() return checkerboard """ "******************************************************************************************* *函数功能 :定位棋子颜色及位置 *输入参数 :裁剪后的图像 *返 回 值 :棋子颜色及位置列表 *编写时间 : 2021.6.30 *作 者 : diyun ********************************************************************************************""" def dingweiqizi_yanse_weizhi(img): '''******************************************** 2、识别棋盘棋子位置及颜色及序号; ********************************************''' #img = cv2.imread("./checkerboard/checkerboard_1.jpg") img = cv2.resize(img, (724,724), interpolation=cv2.INTER_AREA) #cv2.imshow("src",img) #cv2.waitKey(1000) #变量定义 small_length=38 #每个小格宽高 qizi_zhijing=38#棋子直径 zuoshangjiao=20#棋盘四周的宽度 list = [[0 for i in range(19)] for j in range(19)] #print(list) for i in range(19): for j in range(19): lie = i hang = j Tp_x = small_length * lie Tp_y = small_length * hang Tp_width = qizi_zhijing Tp_height = qizi_zhijing img_temp=img[Tp_y:Tp_y+Tp_height, Tp_x:Tp_x+Tp_width]#参数含义分别是:y、y+h、x、x+w heise_zhanbi=Heise_zhanbi(img_temp) if heise_zhanbi>0.5: list[hang][lie]=2#黑色 print("第", j+1, "行,第", i+1, "列棋子为黑色") #print("当前棋子为黑色") else: baise_zhanbi = Baise_zhanbi(img_temp) if baise_zhanbi > 0.15: list[hang][lie] = 1 # 白色 print("第", j+1, "行,第",i+1 , "列棋子为白色") #print("当前棋子为白色") else: list[hang][lie] = 0 # 无棋子 #print("当前位置没有棋子") #print(heise_zhanbi) #cv2.imshow("2",img) #print("\n") #print(list) return list if __name__ =="__main__": list0 = [[0 for i in range(19)] for j in range(19)] list_finall = [] img = cv2.imread("./screen/9.jpg") '''******************************************** 1、定位棋盘位置 ********************************************''' img_after=dingweiqizi_weizhi(img) #cv2.imshow("src",img) '''******************************************** 2、识别棋盘棋子位置及颜色及序号; ********************************************''' list1=dingweiqizi_yanse_weizhi(img_after) print(list1)
到此这篇关于基于python定位棋子位置及识别棋子颜色的文章就介绍到这了,更多相关python定位棋子位置及识别棋子颜色内容请搜索hwidc以前的文章或继续浏览下面的相关文章希望大家以后多多支持hwidc!
【转自:荷兰服务器 】