Python 哪种方式循环最快,或许颠覆你的认知!

编辑: admin 分类: python 发布时间: 2023-05-01 来源:互联网
<p style="text-align: center;"><img src="http://img.hwidc.net/python/16811277246433f92ce337b.jpg"/></p><p >众所周知,Python 不是一种执行效率较高的语言。此外在任何语言中,循环都是一种非常消耗时间的操作。假如任意一种简单的单步操作耗费的时间为 1 个单位,将此操作重复执行上万次,最终耗费的时间也将增长上万倍。<br></p><p >while 和 for 是 Python 中常用的两种实现循环的关键字,它们的运行效率实际上是有差距的。比如下面的测试代码:</p><pre class="brush:python;toolbar:false;">import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354</pre><p >这是一个简单的求和操作,计算从 1 到 n 之间所有自然数的总和。可以看到 for 循环相比 while 要快 1.5 秒。<br></p><p >其中的差距主要在于两者的机制不同。<br></p><p >在每次循环中,while 实际上比 for 多执行了两步操作:边界检查和变量 i 的自增。即每进行一次循环,while 都会做一次边界检查 (while i < n)和自增计算(i +=1)。这两步操作都是显式的纯 Python 代码。<br></p><p >for 循环不需要执行边界检查和自增操作,没有增加显式的 Python 代码(纯 Python 代码效率低于底层的 C 代码)。当循环的次数足够多,就出现了明显的效率差距。<br></p><p >可以再增加两个函数,在 for 循环中加上不必要的边界检查和自增计算:</p><pre class="brush:python;toolbar:false;">import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def for_loop_with_inc(n=100_000_000): s = 0 for i in range(n): s += i i += 1 return s def for_loop_with_test(n=100_000_000): s = 0 for i in range(n): if i < n: pass s += i return s def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('for loop with incrementtt', timeit.timeit(for_loop_with_inc, number=1)) print('for loop with testtt', timeit.timeit(for_loop_with_test, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => for loop with increment4.602369500091299 # => for loop with test 4.18337869993411</pre><p >可以看出,增加的边界检查和自增操作确实大大影响了 for 循环的执行效率。<br></p><p >前面提到过,Python 底层的解释器和内置函数是用 C 语言实现的。而 C 语言的执行效率远大于 Python。<br></p><p >对于上面的求等差数列之和的操作,借助于 Python 内置的 sum 函数,可以获得远大于 for 或 while 循环的执行效率。</p><pre class="brush:python;toolbar:false;">import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def sum_range(n=100_000_000): return sum(range(n)) def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('sum rangett', timeit.timeit(sum_range, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => sum range0.8658821999561042</pre><p >可以看到,使用内置函数 sum 替代循环之后,代码的执行效率实现了成倍的增长。<br></p><p >内置函数 sum 的累加操作实际上也是一种循环,但它由 C 语言实现,而 for 循环中的求和操作是由纯 Python 代码 s += i 实现的。C > Python。<br></p><p >再拓展一下思维。小时候都听说过童年高斯巧妙地计算 1 到 100 之和的故事。1…100 之和等于 (1 + 100) * 50。这个计算方法同样可以应用到上面的求和操作中。</p><pre class="brush:python;toolbar:false;">import timeit def while_loop(n=100_000_000): i = 0 s = 0 while i < n: s += i i += 1 return s def for_loop(n=100_000_000): s = 0 for i in range(n): s += i return s def sum_range(n=100_000_000): return sum(range(n)) def math_sum(n=100_000_000): return (n * (n - 1)) // 2 def main(): print('while looptt', timeit.timeit(while_loop, number=1)) print('for looptt', timeit.timeit(for_loop, number=1)) print('sum rangett', timeit.timeit(sum_range, number=1)) print('math sumtt', timeit.timeit(math_sum, number=1)) if __name__ == '__main__': main() # => while loop 4.718853999860585 # => for loop 3.211570399813354 # => sum range0.8658821999561042 # => math sum 2.400018274784088e-06</pre><p >最终 math sum 的执行时间约为 2.4e-6,缩短了上百万倍。这里的思路就是,既然循环的效率低,一段代码要重复执行上亿次。<br></p><p >索性直接不要循环,通过数学公式,把上亿次的循环操作变成只有一步操作。效率自然得到了空前的加强。<br></p><p >最后的结论(有点谜语人):<br></p><p ><strong>实现循环的最快方式—— —— ——就是不用循环</strong></p><p >对于 Python 而言,则尽可能地使用内置函数,将循环中的纯 Python 代码降到最低。</p>

以上就是Python 哪种方式循环最快,或许颠覆你的认知!的详细内容,更多请关注海外IDC网其它相关文章!

【本文来自:日本服务器 http://www.558idc.com/jap.html 复制请保留原URL】